Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T04:25:14.621Z Has data issue: false hasContentIssue false

THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF COCONUT (Cocos nucifera): A REVIEW

Published online by Cambridge University Press:  26 January 2011

M. K. V. CARR*
Affiliation:
Emeritus Professor, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
*
Address for correspondence: Pear Tree Cottage, Frog Lane, Ilmington, Shipston on Stour, Warwickshire, CV36 4LQ, UK. Email: mikecarr@cwms.org.uk

Summary

The results of research on the water relations and irrigation needs of coconut are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information on the centres of origin and production of coconut and on crop development processes is followed by reviews of plant water relations, crop water use and water productivity, including drought mitigation. The majority of the recent research published in the international literature has been conducted in Brazil, Kerala (South India) and Sri Lanka, and by CIRAD (France) in association with local research organizations in a number of countries, including the Ivory Coast. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (44 months) mean that causal links between environmental factors (especially water) are difficult to establish. The stomata play an important role in controlling water loss, whilst the leaf water potential is a sensitive indicator of plant water status. Both stomatal conductance and leaf water potential are negatively correlated with the saturation deficit of the air. Although roots extend to depths >2 m and laterally >3 m, the density of roots is greatest in the top 0–1.0 m soil, and laterally within 1.0–1.5 m of the trunk. In general, dwarf cultivars are more susceptible to drought than tall ones. Methods of screening for drought tolerance based on physiological traits have been proposed. The best estimates of the actual water use (ETc) of mature palms indicate representative rates of about 3 mm d−1. Reported values for the crop coefficient (Kc) are variable but suggest that 0.7 is a reasonable estimate. Although the sensitivity of coconut to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation although annual yield increases (50%) of 20–40 nuts palm−1 (4–12 kg copra, cultivar dependent) have been reported. These are only realized in the third and subsequent years after the introduction of irrigation applied at a rate equivalent to about 2 mm d−1 (or 100 l palm−1 d−1) at intervals of up to one week. Irrigation increases female flower production and reduces premature nut fall. Basin irrigation, micro-sprinklers and drip irrigation are all suitable methods of applying water. Recommended methods of drought mitigation include the burial of husks in trenches adjacent to the plant, mulching and the application of common salt (chloride ions). An international approach to addressing the need for more information on water productivity is recommended.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abeywardena, V. (1968). Forecasting coconut crops using rainfall data – a preliminary study. Ceylon Coconut Quarterly 19:161176.Google Scholar
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage, Food and Agriculture Organization of the United Nations, Paper 56, Rome, Italy.Google Scholar
Arachchi, L. P. V. (1998). Preliminary requirements to design a suitable drip irrigation system for coconut (Cocos nucifera L.) in gravely soils. Agricultural Water Management 38:169180.CrossRefGoogle Scholar
Avilan, L. A., Rivas, N. and Sucre, R. (1984). Estudio del sistema radical del cocotero (Cocos nucifera L.). Oléagineux 39:1323.Google Scholar
Azevedo, P. V., Sausa, I.F. and Silva, B. B. (2006). Water-use-efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil. Agricultural Water Management 84:259264.CrossRefGoogle Scholar
Balasubramanian, R., Ramanathian, T. and Vijayaraghavan, H. (1985). Certain aspects of moisture conservation in coconut gardens. Indian Coconut Journal 16:1315.Google Scholar
Bhaskaran, U. P. and Leela, K. (1978). Response of coconut to irrigation in relation to production status of palms and soil type. In Proceedings of First Annual Symposium on Plantation Crops (PLACROSYM 1), 200206 (Ed. Nelliat, E. V.) Kasaragod, India.Google Scholar
Bonneau, X., Boulin, D., Bourgoing, G. and Sugarianto, J. (1997). Le chlorure de sodium, fertilisant idéal du cocotier en Indonésie. Plantations, Recherche, Développement 4:336346.Google Scholar
Bonneau, X., Ochs, R., Kitu, W. T. and Yuswohadi, . (1993). Chlorine: an essential element in the mineral nutrition of hybrid coconuts in Lampung (Indonesia). Oléagineux 48:179189.Google Scholar
Bonneau, X. and Subagio, K. (1999). Culture du cocotier en zone exposée au risque de sécheresse. Plantations, recherche, développement 6:432439.Google Scholar
Braconnier, S. and d'Auzac, J. (1990). Chloride and stomatal conductance in coconut. Oléagineux 45:259264.Google Scholar
Braconnier, S. and Bonneau, X. (1998). Effects of chlorine deficiency in the field on leaf gas exchanges in the PB121 coconut hybrid. Agronomie 18:563572.CrossRefGoogle Scholar
Carr, M. K. V. (1992). Plantation Crop Research in Sri Lanka. Unpublished report, Silsoe College, Cranfield University, 1220.Google Scholar
Carr, M. K. V. (2001). The water relations and irrigation requirements of coffee. Experimental Agriculture 37:136.CrossRefGoogle Scholar
Carr, M. K. V. (2009). The water relations and irrigation requirements of banana (Musa spp.). Experimental Agriculture 45:333371.CrossRefGoogle Scholar
Carr, M. K. V. (2010a). The role of water in the growth of the tea (Camellia sinensis) crop: a synthesis of research in eastern Africa. 1. Plant water relations. Experimental Agriculture 46:329349.Google Scholar
Carr, M. K. V. (2010b). The role of water in the growth of the tea (Camellia sinensis) crop: a synthesis of research in eastern Africa. 2. Water productivity. Experimental Agriculture 46:351379.CrossRefGoogle Scholar
Carr, M. K. V. and Knox, J. W. (2011). The water relations and irrigation requirements of sugar cane (Saccharum officinarum): a review. Experimental Agriculture (in press).CrossRefGoogle Scholar
Carr, M. K. V. and Punchihewa, P. G. (2002). External Review Report. BUROTROP, Montpellier, France, 13–46.Google Scholar
CDB (2010). Coconut Development Board of India. Available from: www.coconutboard.nic.in/package.htm [Accessed 13 December 2010].Google Scholar
Cintra, F. L. D., Leal, M. de L. da S.L. and Passos, E. E. de M. (1992). Evaluation of root system of dwarf coconut cultivars. Oléagineux 47:225234.Google Scholar
Cintra, F. L. D., Passos, E. E. de M. and Leal, M. de L. da S.L. (1993). Evaluation de la distribution du système racinaire de cultivars de cocotier Grands. Oléagineux 48:453461.Google Scholar
Copeland, E. H. (1906). On the water relations of the coconut palm (Cocos nucifera). Journal of Science, Manila 1:657.Google Scholar
Doorenbos, J. and Pruitt, W. O. (1977). Crop water requirements. Irrigation and Drainage, Food and Agriculture Organization of the United Nations, Paper 24, Rome, Italy.Google Scholar
FAO (2010). UN Food and Agriculture Organization http://faostat.fao.org/site/339/default.aspxGoogle Scholar
Friend, D. and Corley, R. H. V. (1994). Measuring coconut palm dry matter production. Experimental Agriculture 30:223235.CrossRefGoogle Scholar
Gomes, F. P., Mielke, M. S. and Almeida, A-AF. (2002a). Leaf gas exchange of green dwarf coconut (Cocos nucifera L. var. nana) in two contrasting environments of the Brazilian north-east region, Journal of Horticultural Science and Biotechnology 77:766772.CrossRefGoogle Scholar
Gomes, F. P., Mielke, M. S., Almeida, A-AF and Muniz, W. S. (2002b). Leaf gas exchange in two dwarf coconut genotypes in the southeast of Bahia State, Brazil. Coconut Research and Development 18:3755.Google Scholar
Gomes, F. P., Oliva, M. A., Mielke, M. S., De Almeida, A-A.F., Lette, H. G. and Aquino, L. A. (2008). Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environmental and Experimental Botany 62:195204.CrossRefGoogle Scholar
Gomes, F. P., Oliva, M. A., Mielke, M. S., De Almeida, A-A.F., Lette, H. G. and Aquino, L. A. (2009). Is abscisic acid involved in the drought responses of Brazilian Green Dwarf coconut? Experimental Agriculture 45:189198.CrossRefGoogle Scholar
Gomes, F. P. and Prado, C. H. B. A. (2007). Ecophysiology of coconut palm under water stress. Brazil Journal of Plant Physiology 19:377391.CrossRefGoogle Scholar
Harries, H. C. (1978). The evolution, dissemination and classification of Cocos nucifera L. Botanical Review 44:265320.CrossRefGoogle Scholar
Harries, H. C. (1995). Coconut Cocos nucifera L. In Evolution of Crop Plants 2nd Edn, 389394 (Eds Smart, J. and Simmonds, N. W.). Harlow: Longmans.Google Scholar
Huxley, P. (1999). Tropical Agroforestry. Oxford: Blackwell Science.Google Scholar
Jayakumar, M., Saseendran, S. A. and Hemapraba, M. (1988). Crop coefficient for coconut (Cocos nucifera L.): a lysimetric study. Agricultural and Forest Meteorology 43:235240.CrossRefGoogle Scholar
Jayasekara, C., Ranasinghe, C. S. and Mathes, D. T. (1993). Screening for high yield and drought tolerance in coconut. In Advances in Coconut Research and Development, 209218. (Eds. Nair, M.K., Khan, H.H., Gopalasundaram, P. & Bhaskara Rao, E.V.V.). New Delhi, Oxford and IBH Publishing.Google Scholar
Juma, M. and Fordham, R. (1998). The effect of environmental stress on coconut (Cocos nucifera L.) growth in Zanzibar. In Proceedings of the International Cashew and Coconut Conference: Trees for Life – the Key to Development, 342347 (Eds Topper, C.P. et al. ). BioHybrids International Ltd, Reading, UK.Google Scholar
Kasturi Bai, K. V., Naresh Kumar, S., Rajagopal, V. and Vijayakumar, K. (2008). Principal component analysis of chlorophyll fluorescent transients for tolerance to drought stress in coconut seedlings. Indian Journal of Horticulture 65:471476.Google Scholar
Kasturi Bai, K. V., Voleti, S. R. and Rajagopal, V. (1988). Water relations of coconut palms as influenced by environmental variables. Agricultural and Forest Meteorology 43:193199.CrossRefGoogle Scholar
Keller, J., Sivanappan, R. K. and Varadan, K. M. (1992). Design logic for deficit drip irrigation of coconut trees. Irrigation and Drainage Systems 6:17.CrossRefGoogle Scholar
Kushwah, B. L., Nelliat, E. V., Markose, V.T. and Sunny, A. F. (1973). Rooting pattern of coconut (Cocos nucifera L.). Indian Journal of Agronomy 18:7174.Google Scholar
Lebrun, P., N'cho, Y. P., Seguin, M., Grivet, L. and Baudouin, L. (1998). Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103108.CrossRefGoogle Scholar
Madurapperuma, W. S., Bleby, T. M. and Burgess, S. S. O. (2009a). Evaluation of sap flow methods to determine water use by cultivated palms. Environmental and Experimental Botany 66:372390.CrossRefGoogle Scholar
Madurapperuma, W. S., de Costa, W. A. J. M., Sangakkara, U. R. and Jayescara, C. (2009b). Estimation of water use of mature coconut (Cocos nucifera L.) cultivars (CRIC 60 and CRIC 65) grown in the low country intermediate zone using the compensation heat pulse method (CHPM). Journal of the National Science Foundation of Sri Lanka 37:175186.CrossRefGoogle Scholar
Magnaye, A. B. (1969). Studies on the root system of healthy and cadang-cadang affected coconut trees. Philippine Journal of Plant Industry 34:143154.Google Scholar
Mahindapala, R. and Pinto, J. L. J. G. (1991). Coconut Cultivation. Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka.Google Scholar
Manthriratna, M. A. P. P. and Sambasivam, S. (1974). Stomatal density in varieties and forms of the coconut. Ceylon Coconut Journal 25:105108.Google Scholar
Mathew, C. (1981). Water relations of coconut palm affected by root (wilt) disease. Journal of Plantation Crops 9:5155.Google Scholar
Marar, M. M. K. and Kunhiraman, C. A. (1957). Husk burial for the improvement of coconut gardens. Indian Coconut Journal 10:311.Google Scholar
Marinho, F. J. L., Gheyi, H. R., Fernandes, P. D., de Holanda, J. S. and Neto, M. F. (2006). Cultivo de coco ‘Anão Verde’ irrigado com águas salinas. Pesquisa Agropecuária Brasileira, Brasília 41:12771284.CrossRefGoogle Scholar
Mialet-Serra, I., Clement-Vidal, A., Roupsard, O., Jourdan, C. and Dingkuhn, M. (2008). Whole plant adjustments in coconut (Cocos nucifera) in response to sink-source relationships. Tree Physiology 28:11991209.CrossRefGoogle Scholar
Milburn, J. A. and Zimmerman, M. H. (1977). Preliminary studies on sapflow in Cocos nucifera L. 1. Water relations and xylem transport. New Phytologist 79:535541.CrossRefGoogle Scholar
Miranda, F. R., de, Gomes, A. R. M., Oliveira, C. H. C., de, Montenegro, A. A. T. and Bezerra, F. M. L. (2007). Evapotranspiration and crop coefficients for green-dwarf coconut in the coastal area of Ceara State, Brazil. Revista Ciencia Agronomica 38:129135.Google Scholar
Moss, J. R. J. (1992). Measuring light interception and the efficiency of light utilization by the coconut palm (Cocos nucifera L.). Experimental Agriculture 28:273285.CrossRefGoogle Scholar
Murray, D. B. (1977). Coconut palm. In Ecophysiology of Tropical Crops, 383407 (Eds. Alvim, P. de T. and Kozlowski, T.T.), London: Academic Press.CrossRefGoogle Scholar
Nagwekar, D. D., Desai, V. S., Sawant, V. S., Haldankar, P. M., Joshi, G. D. and More, T. A. (2006). Effect of drip irrigation on yield of coconut (Cocos nucifera L.) in sandy soil of Konkan region of Maharashtra (India). Journal of Plantation Crops. 34:344346.Google Scholar
Nainanayake, A., Ranasinghe, C. S. and Tennakoon, N.A. (2008). Efects of drip irrigation on canopy and soil temperature, leaf gas exchange, flowering and nut setting of mature coconut (Cocos nucifera L.). Journal of the National Science Foundation, Sri Lanka 38:4350.Google Scholar
Nair, R. R. (1989). Summer irrigation requirements of the coconut palm. Indian Coconut Journal 19:37.Google Scholar
Naresh, Kumar S. and Kasturi Bai, K. V. (2009). Photosynthetic characters in different shapes of coconut canopy under irrigated and rainfed conditions. Indian Journal of Plant Physiology 14:215223.Google Scholar
Naresh Kumar, S., Kasturi Bai, K. V., Rajagopal, V. and Aggarwal, P.K. (2008). Simulating coconut growth, development and yield with the InfoCrop-coconut model. Tree Physiology 28:10491058.CrossRefGoogle Scholar
Naresh Kumar, S., Rajagopal, V. and Karun, A. (2000). Leaflet anatomical adaptations in coconut cultivars for drought tolerance. In Recent Advances in Plantations Crops Research, 225229 (Eds. Muraleedharan, N. and Rajkumari, R.). New Delhi: Allied Publishers Ltd.Google Scholar
Naresh Kumar, S., Rajagopal, V., Siju Thomas, T., Cherian, V.K., Ratheesh Narayanan, M. K., Ananda, K. S., Nagawekar, D. D., Hanumanthappa, M., Vincent, S. and Srinivasulu, B. (2007). Variations in nut yield of coconut and dry spell in different agro-climatic zones of India. Indian Journal of Horticulture 64:309313.Google Scholar
Nelliat, E. V. and Padmaja, P. K. (1978). Irrigation requirement of coconut and response to levels of fertilizer under irrigated condition during the early bearing stage. In Proceedings of First Annual Symposium on Plantation Crops (PLACROSYM 1) 186199 (Ed. Nelliat, E.V.). Kasaragod, India.Google Scholar
Ollagnier, M., Ochs, R., Pomier, M. and de Taffin, G. (1983). Action du chlore sur le cocotier hybride PB 121 en Côte d'Ivoire et en Indonésie. Oléagineux 38:309321.Google Scholar
Park, M. (1934). Some notes on the effects of drought on the yield of coconut palms. Tropical Agriculturalist 33:141150.Google Scholar
Passos, E. E. M. and Da Silva, J. V. (1990). Functionnement des stomates de cocotier (Cocos nucifera) au champ. Canadian Journal of Botany 68:458460.CrossRefGoogle Scholar
Passos, E. E. M. and Da Silva, J. V. (1991). Détermination de l'état hydrique du cocotier par le méthode dendrométrique. Oléagineux 46:233238.Google Scholar
Passos, E. E. M., Prado, C. H. B. A. and Aragāo, W. M. (2009). The influence of vapour pressure deficit on leaf water relations of Cocos nucifera in northeast Brazil. Experimental Agriculture 45:93106.CrossRefGoogle Scholar
Peiris, T. S. G. and Thattil, R. O. (1998). The study of climate effects on the nut yield of coconut using parsimonious models. Experimental Agriculture 34:189206.CrossRefGoogle Scholar
Peiris, T. S. G., Thattil, R. O. and Mahindapala, R. (1995). An analysis of the effect of climate and weather on coconut (Cocos nucifera). Experimental Agriculture 31:451460.CrossRefGoogle Scholar
Persley, G. J. (1992). Replanting the Tree of Life: Towards an International Agenda for Coconut Palm Research. Oxford: CAB International.Google Scholar
Pomier, M. and Bonneau, X. (1987). Développement du système racinaire du cocotier en function de milieu en Côte d'Ivoire. Oléagineux 42:409421.Google Scholar
Prado, C.H.B.A., Passos, E. E. M. and de Moraes, J. A. P. V. (2001). Photosynthesis and water relations of six tall genotypes of Cocos nucifera in wet and dry seasons. South African Journal of Botany 67:169176.CrossRefGoogle Scholar
Purseglove, J. W. (1972). Tropical Crops: Monocotyledons. London: Longman.Google Scholar
Rao, A. S. (1989). Water requirements of young coconut palms in a humid tropical climate. Irrigation Science 10:245249.CrossRefGoogle Scholar
Rajagopal, V. and Kasturi Bai, K.V. (2002). Drought tolerance mechanism in coconut. Burotrop Bulletin 17:2122.Google Scholar
Rajagopal, V., Kasturi Bai, K. V., Kumar, S. N. and Niral, V. (2007). Genetic analysis of drought responsive physiological characters in coconut. Indian Journal of Horticulture 64:181189.Google Scholar
Rajagopal, V., Kasturi Bai, K. V. and Voleti, S. R. (1990). Screening of coconut genotypes for drought tolerance. Oléagineux 45:215223.Google Scholar
Rajagopal, V., Patil, K. D. and Sumathykuttyamma, B. (1986). Abnormal stomatal opening in coconut palms affected with root (wilt) disease. Journal of Experimental Botany 37:13981405.CrossRefGoogle Scholar
Rajagopal, V., Ramadasan, A., Kasturi Bai, K. V. and Balasimha, D. (1989). Influence of irrigation on leaf water relations and dry matter production in coconut palms. Irrigation Science 10:7381.CrossRefGoogle Scholar
Rajagopal, V., Shivishankar, S. and Kasturi Bai, K. V. (1993). Characterisation of drought tolerance in coconut. In Advances in Coconut Research and Development 191199 (Eds, Nair, M. K., Khan, H. H., Gopalasundaram, P. and Bhaskara Rao, E. V. V.). Oxford and IBH Publishing Co., New Delhi.Google Scholar
Rajagopal, V., Shivishankar, S., Kasturi Bai, K. V. and Voleti, S.R. (1988). Leaf water potential as an index of drought tolerance in coconut (Cocos nucifera L.). Plant Physiology and Biochemistry (India) 15:8086.Google Scholar
Rajagopal, V., Sumathykuttyamma, and Patil, K. D. (1987). Water relations of coconut palms affected with root (wilt) disease. New Phytologist 105:289293.CrossRefGoogle Scholar
Repellin, A., Laffray, D., Daniel, C., Braconnier, S. and Zuily-Fodil, Y. (1997). Water relations and gas exchange in young coconut palm (Cocos nucifera L.) as influenced by water deficit. Canadian Journal of Botany 75:1827.CrossRefGoogle Scholar
Repellin, A., Zuily-Fodil, Y. and Daniel, C. (1993). Merits of physiological tests for characterizing the performance of different coconut varieties subjected to drought. In European Research Working for Coconut, 71–89, Seminar Proceedings September 1993, CIRAD-CP, Montpellier, France. Also published as Repellin, A., Daniel, C and Zuily-Fodil, Y. (1994). Oleagineux 49:155168.Google Scholar
Roupsard, O, Bonnefond, J-M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Hemel, O., Jourdan, C., Saint-André, L., Mialet-Serra, I., Labouisse, J-P., Epron, D., Joffre, R., Braconnier, S., Rouzière, A., Navarro, M. and Bouillet, J-P. (2006). Partitioning energy and evapo-transpiration above and below a tropical palm canopy. Agricultural and Forest Meteorology 139:252268.CrossRefGoogle Scholar
Shanmugan, K. S. (1973). Moisture management for coconut. Coconut Bulletin 4:210.Google Scholar
Shivashankar, S., Kusturi Bai, K. V. and Rajagopal, V. (1991). Leaf water potential, stomatal resistance and activities of enzymes during the develoment of moisture stress in the coconut palm. Tropical Agriculture, Trinidad 68:106110.Google Scholar
Thamban, C., Mathew, A.C. and Arulraj, S. (2006). Field performance of drip irrigation system in coconut gardens. Journal of Plantation Crops 34:98102.Google Scholar
Tomlinson, P. B. (2006). The uniqueness of palms. Botanical Journal of the Linnean Society 151:514.CrossRefGoogle Scholar
Voleti, S. R., Kasturi Bai, K. V., Nambiar, C. K. B. and Rajagopal, V. (1993a). Influence of soil type on the development of moisture stress in coconut (Cocos nucifera L.). Oléagineux 48:505509.Google Scholar
Voleti, S. R., Kasturi Bai, K. V. and Rajagopal, V. (1993b). Water potential in the leaves of coconut (Cocos nucifera L.) under rainfed and irrigated conditions. In Advances in Coconut Research and Development 243245 (Eds. Nair, M. K., Khan, H. H., Gopalasundaram, P. and Bhaskara Rao, E. V. V.). Oxford and IBH Publishing Co., New Delhi.Google Scholar
Von Uexhull, H. R. (1985). Chlorine in the nutrition of palm trees. Oléagineux 40: 6772.Google Scholar
Wickramaratne, R. T. (1987). Breeding coconuts for adaptation to drought. Coconut Bulletin 4:1623.Google Scholar
Yusuf, M. and Varadan, K.M. (1993). Water management studies on coconut in India. In Advances in Coconut Research and Development 337346 (Eds. Nair, M. K., Khan, H. H., Gopalasundaram, P. and Bhaskara Rao, E. V. V.). Oxford and IBH Publishing Co., New Delhi.Google Scholar