Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T08:42:47.224Z Has data issue: false hasContentIssue false

Mechanisms in allergic airway inflammation – lessons from studies in the mouse

Published online by Cambridge University Press:  27 May 2008

Bennett O.V. Shum
Affiliation:
Immunology and Inflammation Research Program, Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia. CRC for Asthma and Airways, Camperdown, New South Wales, Australia.
Michael S. Rolph
Affiliation:
Immunology and Inflammation Research Program, Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia. CRC for Asthma and Airways, Camperdown, New South Wales, Australia.
William A. Sewell*
Affiliation:
Immunology and Inflammation Research Program, Garvan Institute for Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
*
*Corresponding author: William Sewell, Immunology and Inflammation Research Program, Garvan Institute for Medical Research, 384 Victoria St, Darlinghurst, New South Wales 2010, Australia. Tel: +61 2 9295 8434; Fax: +61 2 9295 8404; E-mail: w.sewell@garvan.org.au

Abstract

Asthma is a chronic inflammatory disease of the airways, involving recurrent episodes of airway obstruction and wheezing. A common pathological feature in asthma is the presence of a characteristic allergic airway inflammatory response involving extensive leukocyte infiltration, mucus overproduction and airway hyper-reactivity. The pathogenesis of allergic airway inflammation is complex, involving multiple cell types such as T helper 2 cells, regulatory T cells, eosinophils, dendritic cells, mast cells, and parenchymal cells of the lung. The cellular response in allergic airway inflammation is controlled by a broad range of bioactive mediators, including IgE, cytokines and chemokines. The asthmatic allergic inflammatory response has been a particular focus of efforts to develop novel therapeutic agents. Animal models are widely used to investigate inflammatory mechanisms. Although these models are not perfect replicas of clinical asthma, such studies have led to the development of numerous novel therapeutic agents, of which some have already been successful in clinical trials.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Masoli, M. et al. (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59, 469-478CrossRefGoogle ScholarPubMed
2Marks, G.B., Correll, P.K. and Williamson, M. (2005) Asthma in Australia 2005. Med J Aust 183, 445-446CrossRefGoogle ScholarPubMed
3von Hertzen, L. and Haahtela, T. (2005) Signs of reversing trends in prevalence of asthma. Allergy 60, 283-292CrossRefGoogle ScholarPubMed
4Weiss, K.B. and Sullivan, S.D. (2001) The health economics of asthma and rhinitis. I. Assessing the economic impact. J Allergy Clin Immunol 107, 3-8CrossRefGoogle ScholarPubMed
5Mallol, J. et al. (2008) Heightened bronchial hyperresponsiveness in the absence of heightened atopy in children with current wheezing and low income status. Thorax 63, 167-171Google ScholarPubMed
6Wills-Karp, M. (1999) Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 17, 255-281CrossRefGoogle ScholarPubMed
7Douwes, J. et al. (2002) Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57, 643-648CrossRefGoogle ScholarPubMed
8Zosky, G.R. and Sly, P.D. (2007) Animal models of asthma. Clin Exp Allergy 37, 973-988CrossRefGoogle ScholarPubMed
9Persson, C.G. (2002) Con: mice are not a good model of human airway disease. Am J Respir Crit Care Med 166, 6-7; discussion 8CrossRefGoogle Scholar
10Clark, K. et al. (2004) Eosinophil degranulation in the allergic lung of mice primarily occurs in the airway lumen. J Leukoc Biol 75, 1001-1009CrossRefGoogle ScholarPubMed
11Kumar, R.K. and Foster, P.S. (2002) Modeling allergic asthma in mice: pitfalls and opportunities. Am J Respir Cell Mol Biol 27, 267-272CrossRefGoogle ScholarPubMed
12Johnson, J.R. et al. (2004) Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 169, 378-385CrossRefGoogle ScholarPubMed
13Zosky, G.R. et al. (2008) Ovalbumin-sensitized mice are good models for airway hyperresponsiveness but not acute physiological responses to allergen inhalation. Clin Exp Allergy 38, 829-838CrossRefGoogle Scholar
14Gelfand, E.W. (2002) Pro: mice are a good model of human airway disease. Am J Respir Crit Care Med 166, 5-6; discussion 7-8CrossRefGoogle ScholarPubMed
15Gavett, S.H. et al. (1994) Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10, 587-593CrossRefGoogle ScholarPubMed
16Cohn, L., Elias, J.A. and Chupp, G.L. (2004) Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 22, 789-815CrossRefGoogle ScholarPubMed
17Robinson, D.S. et al. (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326, 298-304CrossRefGoogle ScholarPubMed
18Abbas, A.K., Murphy, K.M. and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature 383, 787-793CrossRefGoogle ScholarPubMed
19Amsen, D. et al. (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515-526CrossRefGoogle ScholarPubMed
20Kaplan, M.H. et al. (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313-319CrossRefGoogle ScholarPubMed
21Kopf, M. et al. (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362, 245-248CrossRefGoogle ScholarPubMed
22Akimoto, T. et al. (1998) Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med 187, 1537-1542CrossRefGoogle ScholarPubMed
23Mathew, A. et al. (2001) Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 193, 1087-1096CrossRefGoogle Scholar
24Gernez, Y. et al. (2007) Altered phosphorylated signal transducer and activator of transcription profile of CD4+CD161+ T cells in asthma: modulation by allergic status and oral corticosteroids. J Allergy Clin Immunol 120, 1441-1448CrossRefGoogle ScholarPubMed
25Zheng, W. and Flavell, R.A. (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587-596CrossRefGoogle ScholarPubMed
26Ho, I.C., Lo, D. and Glimcher, L.H. (1998) c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med 188, 1859-1866CrossRefGoogle ScholarPubMed
27Rengarajan, J., Tang, B. and Glimcher, L.H. (2002) NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naive T(H)cells. Nat Immunol 3, 48-54CrossRefGoogle ScholarPubMed
28Rincon, M. and Flavell, R.A. (1997) Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells. Mol Cell Biol 17, 1522-1534CrossRefGoogle ScholarPubMed
29Masuda, A. et al. (2004) The interaction between GATA proteins and activator protein-1 promotes the transcription of IL-13 in mast cells. J Immunol 173, 5564-5573CrossRefGoogle ScholarPubMed
30Tu, L. et al. (2005) Notch signaling is an important regulator of type 2 immunity. J Exp Med 202, 1037-1042CrossRefGoogle ScholarPubMed
31Amsen, D. et al. (2007) Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89-99CrossRefGoogle Scholar
32Kaplan, M.H. et al. (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174-177CrossRefGoogle ScholarPubMed
33Seder, R.A. et al. (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A 90, 10188-10192CrossRefGoogle ScholarPubMed
34Szabo, S.J. et al. (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669CrossRefGoogle ScholarPubMed
35Usui, T. et al. (2006) T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med 203, 755-766CrossRefGoogle ScholarPubMed
36Finotto, S. et al. (2002) Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295, 336-338CrossRefGoogle ScholarPubMed
37Ko, F.W. et al. (2007) Decreased T-bet expression and changes in chemokine levels in adults with asthma. Clin Exp Immunol 147, 526-532CrossRefGoogle ScholarPubMed
38Bettelli, E., Korn, T. and Kuchroo, V.K. (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19, 652-657CrossRefGoogle ScholarPubMed
39Ivanov, II et al. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133CrossRefGoogle ScholarPubMed
40Acosta-Rodriguez, E.V. et al. (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8, 942-949CrossRefGoogle Scholar
41Veldhoen, M. et al. (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179-189CrossRefGoogle ScholarPubMed
42Korn, T. et al. (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484-487CrossRefGoogle ScholarPubMed
43Langrish, C.L. et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201, 233-240CrossRefGoogle ScholarPubMed
44Wing, K., Fehervari, Z. and Sakaguchi, S. (2006) Emerging possibilities in the development and function of regulatory T cells. Int Immunol 18, 991-1000CrossRefGoogle ScholarPubMed
45Watanabe, N. et al. (2005) Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181-1185CrossRefGoogle ScholarPubMed
46Sakaguchi, S. (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562CrossRefGoogle ScholarPubMed
47Seddiki, N. et al. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203, 1693-1700CrossRefGoogle ScholarPubMed
48Kearley, J. et al. (2005) Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med 202, 1539-1547CrossRefGoogle ScholarPubMed
49Lewkowich, I.P. et al. (2005) CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202, 1549-1561CrossRefGoogle ScholarPubMed
50Su, Y.C. et al. (2006) Cyclophosphamide augments inflammation by reducing immunosuppression in a mouse model of allergic airway disease. J Allergy Clin Immunol 117, 635-641CrossRefGoogle Scholar
51Akbari, O., DeKruyff, R.H. and Umetsu, D.T. (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2, 725-731CrossRefGoogle ScholarPubMed
52Strickland, D.H. et al. (2006) Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. J Exp Med 203, 2649-2660CrossRefGoogle ScholarPubMed
53Ling, E.M. et al. (2004) Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363, 608-615CrossRefGoogle ScholarPubMed
54Akdis, M. et al. (2004) Immune Responses in Healthy and Allergic Individuals Are Characterized by a Fine Balance between Allergen-specific T Regulatory 1 and T Helper 2 Cells. J Exp Med 1, 1Google Scholar
55Kamradt, T., Goggel, R. and Erb, K.J. (2005) Induction, exacerbation and inhibition of allergic and autoimmune diseases by infection. Trends Immunol 26, 260-267CrossRefGoogle ScholarPubMed
56Yazdanbakhsh, M., van den Biggelaar, A. and Maizels, R.M. (2001) Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol 22, 372-377CrossRefGoogle ScholarPubMed
57Yazdanbakhsh, M., Kremsner, P.G. and van Ree, R. (2002) Allergy, parasites, and the hygiene hypothesis. Science 296, 490-494CrossRefGoogle ScholarPubMed
58Wilson, M.S. et al. (2005) Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 202, 1199-1212CrossRefGoogle ScholarPubMed
59Wohlleben, G. et al. (2004) Helminth infection modulates the development of allergen-induced airway inflammation. Int Immunol 16, 585-596CrossRefGoogle ScholarPubMed
60Stumbles, P.A. et al. (1998) Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J Exp Med 188, 2019-2031CrossRefGoogle ScholarPubMed
61Lambrecht, B.N. et al. (2000) Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106, 551-559CrossRefGoogle ScholarPubMed
62van Rijt, L.S. et al. (2004) Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not reactivation, of TH2 effector responses in a mouse model of asthma. J Allergy Clin Immunol 114, 166-173CrossRefGoogle ScholarPubMed
63Radhakrishnan, S. et al. (2005) Dendritic cells activated by cross-linking B7-DC (PD-L2) block inflammatory airway disease. J Allergy Clin Immunol 116, 668-674CrossRefGoogle ScholarPubMed
64Genovese, M.C. et al. (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353, 1114-1123CrossRefGoogle ScholarPubMed
65Wang, Y.H. et al. (2006) Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 24, 827-838CrossRefGoogle ScholarPubMed
66Al-Shami, A. et al. (2004) A role for thymic stromal lymphopoietin in CD4(+) T cell development. J Exp Med 200, 159-168CrossRefGoogle ScholarPubMed
67Al-Shami, A. et al. (2005) A role for TSLP in the development of inflammation in an asthma model. J Exp Med 202, 829-839CrossRefGoogle Scholar
68Ying, S. et al. (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174, 8183-8190CrossRefGoogle ScholarPubMed
69Rimoldi, M. et al. (2005) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6, 507-514CrossRefGoogle ScholarPubMed
70Rothenberg, M.E. and Hogan, S.P. (2006) The eosinophil. Annu Rev Immunol 24, 147-174CrossRefGoogle ScholarPubMed
71Eum, S.Y. et al. (1995) Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci U S A 92, 12290-12294CrossRefGoogle ScholarPubMed
72Foster, P.S. et al. (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183, 195-201CrossRefGoogle Scholar
73Corry, D.B. et al. (1996) Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 183, 109-117CrossRefGoogle Scholar
74Tournoy, K.G. et al. (2000) Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin Exp Allergy 30, 79-85CrossRefGoogle Scholar
75Wilder, J.A. et al. (1999) Dissociation of airway hyperresponsiveness from immunoglobulin E and airway eosinophilia in a murine model of allergic asthma. Am J Respir Cell Mol Biol 20, 1326-1334CrossRefGoogle Scholar
76Humbles, A.A. et al. (2004) A critical role for eosinophils in allergic airways remodeling. Science 305, 1776-1779CrossRefGoogle ScholarPubMed
77Lee, J.J. et al. (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773-1776CrossRefGoogle ScholarPubMed
78Marshall, J.S. and Jawdat, D.M. (2004) Mast cells in innate immunity. J Allergy Clin Immunol 114, 21-27CrossRefGoogle ScholarPubMed
79Kawakami, T. and Galli, S.J. (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2, 773-786CrossRefGoogle ScholarPubMed
80Lorentz, A. et al. (2000) Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4. J Immunol 164, 43-48CrossRefGoogle ScholarPubMed
81Bradding, P. et al. (1994) Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10, 471-480CrossRefGoogle ScholarPubMed
82Bradding, P., Walls, A.F. and Holgate, S.T. (2006) The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol 117, 1277-1284CrossRefGoogle ScholarPubMed
83Nigo, Y.I. et al. (2006) Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci U S A 103, 2286-2291CrossRefGoogle ScholarPubMed
84Williams, C.M. and Galli, S.J. (2000) Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 192, 455-462CrossRefGoogle Scholar
85Yu, M. et al. (2006) Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Invest 16, 1633-1641CrossRefGoogle Scholar
86Schulman, E.S. (2001) Development of a monoclonal anti-immunoglobulin E antibody (omalizumab) for the treatment of allergic respiratory disorders. Am J Respir Crit Care Med 164, S6-11CrossRefGoogle ScholarPubMed
87Fahy, J.V. et al. (1997) The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 155, 1828-1834CrossRefGoogle ScholarPubMed
88Djukanovic, R. et al. (2004) Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med 170, 583-593CrossRefGoogle ScholarPubMed
89Wu, A.C. et al. (2007) Cost-effectiveness of omalizumab in adults with severe asthma: results from the Asthma Policy Model. J Allergy Clin Immunol 120, 1146-1152CrossRefGoogle ScholarPubMed
90Knight, D.A. and Holgate, S.T. (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8, 432-446CrossRefGoogle ScholarPubMed
91Komiya, A. et al. (2003) Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells. Cell Immunol 225, 91-100CrossRefGoogle ScholarPubMed
92Hahn, C. et al. (2006) Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 117, 787-794CrossRefGoogle ScholarPubMed
93Braun, A. et al. (1998) Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur J Immunol 28, 3240-32513.0.CO;2-U>CrossRefGoogle Scholar
94Asokananthan, N. et al. (2002) Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 168, 3577-3585CrossRefGoogle ScholarPubMed
95King, C. et al. (1998) Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 161, 3645-3651CrossRefGoogle ScholarPubMed
96Lordan, J.L. et al. (2002) Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol 169, 407-414CrossRefGoogle ScholarPubMed
97Pichavant, M. et al. (2005) Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol 115, 771-778CrossRefGoogle ScholarPubMed
98Boldogh, I. et al. (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115, 2169-2179CrossRefGoogle ScholarPubMed
99Hassim, Z., Maronese, S.E. and Kumar, R.K. (1998) Injury to murine airway epithelial cells by pollen enzymes. Thorax 53, 368-371CrossRefGoogle ScholarPubMed
100Broide, D.H. et al. (2005) Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 102, 17723-17728CrossRefGoogle ScholarPubMed
101Kuperman, D.A. et al. (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8, 885-889CrossRefGoogle ScholarPubMed
102Madan, T. et al. (2001) Surfactant proteins A and D protect mice against pulmonary hypersensitivity induced by Aspergillus fumigatus antigens and allergens. J Clin Invest 107, 467-475CrossRefGoogle Scholar
103Shum, B.O. et al. (2006) The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. J Clin Invest 116, 2183-2192CrossRefGoogle ScholarPubMed
104Lloyd, C.M. et al. (2001) Mouse models of allergic airway disease. Adv Immunol 77, 263-295CrossRefGoogle ScholarPubMed
105Moffatt, J.D. (2005) What targets have knockouts revealed in asthma? Pharmacol Ther 107, 343-357CrossRefGoogle ScholarPubMed
106Zimmermann, N. et al. (2003) Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 111, 227-242Google ScholarPubMed
107Le Gros, G. et al. (1990) Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med 172, 921-929CrossRefGoogle ScholarPubMed
108Coffman, R.L. et al. (1986) B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol 136, 4538-4541CrossRefGoogle ScholarPubMed
109Kelly-Welch, A.E. et al. (2003) Interleukin-4 and interleukin-13 signaling connections maps. Science 300, 1527-1528CrossRefGoogle ScholarPubMed
110Cohn, L. et al. (1997) Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186, 1737-1747CrossRefGoogle Scholar
111Brusselle, G. et al. (1995) Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 12, 254-259CrossRefGoogle ScholarPubMed
112Hogan, S.P. et al. (1998) A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J Immunol 161, 1501-1509CrossRefGoogle ScholarPubMed
113Borish, L.C. et al. (2001) Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol 107, 963-970CrossRefGoogle ScholarPubMed
114Walker, C. et al. (1992) Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am Rev Respir Dis 146, 109-115CrossRefGoogle ScholarPubMed
115Johansson, A.K. et al. (2004) Allergen-induced traffic of bone marrow eosinophils, neutrophils and lymphocytes to airways. Eur J Immunol 34, 3135-3145CrossRefGoogle ScholarPubMed
116Leckie, M.J. et al. (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144-2148CrossRefGoogle ScholarPubMed
117Flood-Page, P. et al. (2007) A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 176, 1062-1071CrossRefGoogle ScholarPubMed
118Kips, J.C. et al. (2003) Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 167, 1655-1659CrossRefGoogle ScholarPubMed
119Flood-Page, P.T. et al. (2003) Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 167, 199-204CrossRefGoogle ScholarPubMed
120Soussi-Gounni, A., Kontolemos, M. and Hamid, Q. (2001) Role of IL-9 in the pathophysiology of allergic diseases. J Allergy Clin Immunol 107, 575-582CrossRefGoogle ScholarPubMed
121Temann, U.A., Ray, P. and Flavell, R.A. (2002) Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J Clin Invest 109, 29-39CrossRefGoogle ScholarPubMed
122Steenwinckel, V. et al. (2007) IL-13 mediates in vivo IL-9 activities on lung epithelial cells but not on hematopoietic cells. J Immunol 178, 3244-3251CrossRefGoogle Scholar
123Cheng, G. et al. (2002) Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med 166, 409-416CrossRefGoogle ScholarPubMed
124Kung, T.T. et al. (2001) Effect of anti-mIL-9 antibody on the development of pulmonary inflammation and airway hyperresponsiveness in allergic mice. Am J Respir Cell Mol Biol 25, 600-605CrossRefGoogle ScholarPubMed
125McMillan, S.J. et al. (2002) The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J Exp Med 195, 51-57CrossRefGoogle Scholar
126Mueller, T.D. et al. (2002) Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim Biophys Acta 1592, 237-250CrossRefGoogle ScholarPubMed
127Wills-Karp, M. et al. (1998) Interleukin-13: central mediator of allergic asthma. Science 282, 2258-2261CrossRefGoogle ScholarPubMed
128Wills-Karp, M. (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202, 175-190CrossRefGoogle ScholarPubMed
129Grunig, G. et al. (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261-2263CrossRefGoogle ScholarPubMed
130Wilson, M.S. et al. (2007) IL-13Ralpha2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. J Clin Invest 117, 2941-2951CrossRefGoogle ScholarPubMed
131Wenzel, S. et al. (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1422-1431CrossRefGoogle ScholarPubMed
132Bryan, S.A. et al. (2000) Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2149-2153CrossRefGoogle ScholarPubMed
133Cho, S.H. et al. (2005) Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma. Am J Respir Crit Care Med 171, 224-230CrossRefGoogle ScholarPubMed
134Krug, N. et al. (1996) T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am J Respir Cell Mol Biol 14, 319-326CrossRefGoogle ScholarPubMed
135Huang, T.J. et al. (2001) Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-gamma. J Immunol 166, 207-217CrossRefGoogle ScholarPubMed
136Hansen, G. et al. (1999) Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 103, 175-183CrossRefGoogle ScholarPubMed
137Randolph, D.A. et al. (1999) Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. J Clin Invest 104, 1021-1029CrossRefGoogle Scholar
138Hessel, E.M. et al. (1997) Development of airway hyperresponsiveness is dependent on interferon-gamma and independent of eosinophil infiltration. Am J Respir Cell Mol Biol 16, 325-334CrossRefGoogle ScholarPubMed
139Kumar, R.K. et al. (2004) Effects of anticytokine therapy in a mouse model of chronic asthma. Am J Respir Crit Care Med 170, 1043-1048CrossRefGoogle Scholar
140Bullens, D.M. et al. (2006) IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 7, 135CrossRefGoogle ScholarPubMed
141Henness, S. et al. (2006) IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM. Am J Physiol Lung Cell Mol Physiol 290, L1283-1290CrossRefGoogle ScholarPubMed
142Rahman, M.S. et al. (2006) IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways. J Immunol 177, 4064-4071CrossRefGoogle ScholarPubMed
143Hellings, P.W. et al. (2003) Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 28, 42-50CrossRefGoogle Scholar
144Schnyder-Candrian, S. et al. (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203, 2715-2725CrossRefGoogle ScholarPubMed
145Feldmann, M. and Maini, R.N. (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19, 163-196CrossRefGoogle ScholarPubMed
146Nakae, S. et al. (2007) TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. J Allergy Clin Immunol 119, 680-686CrossRefGoogle ScholarPubMed
147Berry, M.A. et al. (2006) Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 354, 697-708CrossRefGoogle ScholarPubMed
148Rot, A. and von Andrian, U.H. (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22, 891-928CrossRefGoogle ScholarPubMed
149Palmqvist, C., Wardlaw, A.J. and Bradding, P. (2007) Chemokines and their receptors as potential targets for the treatment of asthma. Br J Pharmacol 151, 725-736CrossRefGoogle ScholarPubMed
150Smit, J.J. and Lukacs, N.W. (2006) A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol 533, 277-288CrossRefGoogle Scholar
151Heath, H. et al. (1997) Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J Clin Invest 99, 178-184CrossRefGoogle ScholarPubMed
152Pope, S.M. et al. (2005) The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J Immunol 175, 5341-5350CrossRefGoogle ScholarPubMed
153Humbles, A.A. et al. (2002) The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A 99, 1479-1484CrossRefGoogle ScholarPubMed
154Ma, W. et al. (2002) CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J Clin Invest 109, 621-628CrossRefGoogle Scholar
155Das, A.M. et al. (2006) Selective inhibition of eosinophil influx into the lung by small molecule CCR3 antagonists in mouse models of allergic inflammation. J Pharmacol Exp Ther 318, 411-417CrossRefGoogle Scholar
156Loetscher, P. et al. (2001) The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 276, 2986-2991CrossRefGoogle ScholarPubMed
157Xanthou, G. et al. (2003) CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol 33, 2241-2250CrossRefGoogle ScholarPubMed
158Fulkerson, P.C. et al. (2004) Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). Proc Natl Acad Sci U S A 101, 1987-1992CrossRefGoogle Scholar
159Thomas, M.S., Kunkel, S.L. and Lukacs, N.W. (2002) Differential role of IFN-gamma-inducible protein 10 kDa in a cockroach antigen-induced model of allergic airway hyperreactivity: systemic versus local effects. J Immunol 169, 7045-7053CrossRefGoogle Scholar
160Medoff, B.D. et al. (2002) IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. J Immunol 168, 5278-5286CrossRefGoogle Scholar
161Mellado, M. et al. (2008) Chemokine receptor 2 blockade prevents asthma in a cynomolgus monkey model. J Pharmacol Exp Ther 324, 769-775CrossRefGoogle Scholar
162Morgan, A.J. et al. (2005) IL-4-expressing bronchoalveolar T cells from asthmatic and healthy subjects preferentially express CCR 3 and CCR 4. J Allergy Clin Immunol 116, 594-600CrossRefGoogle ScholarPubMed
163Schuh, J.M. et al. (2002) Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/- mice. FASEB J 16, 1313-1315CrossRefGoogle ScholarPubMed
164Sekiya, T. et al. (2000) Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J Immunol 165, 2205-2213CrossRefGoogle ScholarPubMed
165Propst, S.M. et al. (2000) Proinflammatory and Th2-derived cytokines modulate CD40-mediated expression of inflammatory mediators in airway epithelia: implications for the role of epithelial CD40 in airway inflammation. J Immunol 165, 2214-2221CrossRefGoogle ScholarPubMed
166Weckmann, M. et al. (2007) Critical link between TRAIL and CCL20 for the activation of T(H)2 cells and the expression of allergic airway disease. Nat Med 13, 1308-1315CrossRefGoogle ScholarPubMed
167Sharkhuu, T. et al. (2006) Mechanism of interleukin-25 (IL-17E)-induced pulmonary inflammation and airways hyper-reactivity. Clin Exp Allergy 36, 1575-1583CrossRefGoogle ScholarPubMed
168Okumura, S. et al. (2005) FcepsilonRI-mediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. J Allergy Clin Immunol 115, 272-279CrossRefGoogle ScholarPubMed
169Zaiss, D.M. et al. (2006) Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science 314, 1746CrossRefGoogle ScholarPubMed
170Ritz, S.A. et al. (2002) On the generation of allergic airway diseases: from GM-CSF to Kyoto. Trends Immunol 23, 396-402CrossRefGoogle ScholarPubMed
171Su, Y.C. et al. (2008) Granulocyte-macrophage colony-stimulating factor is required for bronchial eosinophilia in a murine model of allergic airway inflammation. J Immunol 180, 2600-2607CrossRefGoogle Scholar
172Holt, P.G. et al. (2004) Drug development strategies for asthma: in search of a new paradigm. Nat Immunol 5, 695-698CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Publications

The American Academy of Allergy, Asthma and Immunology website offers extensive information for patients, medical professionals, its members and the media:

Kay, A.B. (2005) The role of eosinophils in the pathogenesis of asthma. Trends Mol Med 11, 148-152CrossRefGoogle ScholarPubMed
Holgate, S.T. and Polosa, R. (2006) The mechanisms, diagnosis, and management of severe asthma in adults. Lancet 368, 780-793CrossRefGoogle ScholarPubMed
Casale, T.B. and Stokes, J.R. (2008) Immunomodulators for allergic respiratory disorders. J Allergy Clin Immunol 121, 288-296CrossRefGoogle ScholarPubMed
Harnett, M.M. and Harnett, W.Therapeutic immunomodulators from nematode parasites. Expert Rev Mol Med (in press)Google Scholar
Kay, A.B. (2005) The role of eosinophils in the pathogenesis of asthma. Trends Mol Med 11, 148-152CrossRefGoogle ScholarPubMed
Holgate, S.T. and Polosa, R. (2006) The mechanisms, diagnosis, and management of severe asthma in adults. Lancet 368, 780-793CrossRefGoogle ScholarPubMed
Casale, T.B. and Stokes, J.R. (2008) Immunomodulators for allergic respiratory disorders. J Allergy Clin Immunol 121, 288-296CrossRefGoogle ScholarPubMed
Harnett, M.M. and Harnett, W.Therapeutic immunomodulators from nematode parasites. Expert Rev Mol Med (in press)Google Scholar