Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T00:43:37.061Z Has data issue: false hasContentIssue false

Primary immunodeficiencies associated with DNA-repair disorders

Published online by Cambridge University Press:  18 March 2010

Mary A. Slatter
Affiliation:
Department of Paediatric Immunology, Newcastle General Hospital, Newcastle upon Tyne, UK.
Andrew R. Gennery*
Affiliation:
Department of Paediatric Immunology, Newcastle General Hospital, Newcastle upon Tyne, UK. Institute of Cellular Medicine, Child Health, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
*
*Corresponding Author: Andrew R. Gennery, Department of Paediatric Immunology, Newcastle General Hospital, Westgate Road Newcastle upon Tyne, NE4 6BE, UK. E-mail: a.r.gennery@ncl.ac.uk

Abstract

DNA-repair pathways recognise and repair DNA damaged by exogenous and endogenous agents to maintain genomic integrity. Defects in these pathways lead to replication errors, loss or rearrangement of genomic material and eventually cell death or carcinogenesis. The creation of diverse lymphocyte receptors to identify potential pathogens requires breaking and randomly resorting gene segments encoding antigen receptors. Subsequent repair of the gene segments utilises ubiquitous DNA-repair proteins. Individuals with defective repair pathways are found to be immunodeficient and many are radiosensitive. The role of repair proteins in the development of adaptive immunity by VDJ recombination, antibody isotype class switching and affinity maturation by somatic hypermutation has become clearer over the past few years, partly because of identification of the genes involved in human disease. We describe the mechanisms involved in the development of adaptive immunity relating to DNA repair, and the clinical consequences and treatment of the primary immunodeficiency resulting from such defects.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Riballo, E. et al. (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Molecular Cell 16, 715-724CrossRefGoogle ScholarPubMed
2Bredemeyer, A.L. et al. (2006) ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466-470CrossRefGoogle ScholarPubMed
3Huang, C.Y. et al. (2007) Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. Journal of Experimental Medicine 204, 1371-1381CrossRefGoogle ScholarPubMed
4Helmink, B.A. et al. (2009) MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. Journal of Experimental Medicine 206, 669-679CrossRefGoogle ScholarPubMed
5Perkins, E.J. et al. (2002) Sensing of intermediates in V(D)J recombination by ATM. Genes and Development 16, 159-164CrossRefGoogle Scholar
6Chen, H.T. et al. (2000) Response to RAG-mediated VDJ cleavage by NBS1 and γ-H2AX. Science 290, 1962-1965CrossRefGoogle ScholarPubMed
7Celeste, A. et al. (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology 5, 675-679CrossRefGoogle ScholarPubMed
8Stracker, T.H. et al. (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amsterdam) 3, 845-854CrossRefGoogle Scholar
9Difilippantonio, S. et al. (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biology 7, 675-685CrossRefGoogle ScholarPubMed
10Kobayashi, Y. et al. (1991) Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. Journal of Immunololgy 147, 3201-3209CrossRefGoogle ScholarPubMed
11Lieber, M.R. et al. (2004) The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amsterdam) 3, 817-826CrossRefGoogle ScholarPubMed
12Corneo, B. et al. (2007) Rag mutations reveal robust alternative end joining. Nature 449, 483-486CrossRefGoogle ScholarPubMed
13Babbe, H. et al. (2007) The Bloom's syndrome helicase is critical for development and function of the alphabeta T-cell lineage. Molecular and Cellular Biology 27, 1947-1959CrossRefGoogle ScholarPubMed
14Babbe, H. et al. (2009) Genomic instability resulting from Blm deficiency compromises development, maintenance, and function of the B cell lineage. Journal of Immunology 182, 347-360CrossRefGoogle ScholarPubMed
15Iwasato, T. et al. (1990) Circular DNA is excised by immunoglobulin class switch recombination. Cell 62, 143-149CrossRefGoogle ScholarPubMed
16Muramatsu, M. et al. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553-563CrossRefGoogle Scholar
17Revy, P. et al. (2000) Activation-Induced cytidine Deaminase (AID) deficiency causes the autosomal recessive form of Hyper-IgM syndrome (HIGM2). Cell 102, 565-575CrossRefGoogle ScholarPubMed
18Bransteitter, R. et al. (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proceedings of the National Acadamy of Sciences of the United States of America 100, 4102-4107CrossRefGoogle ScholarPubMed
19Rada, C. et al. (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Current Biology 12, 1748-1755CrossRefGoogle ScholarPubMed
20Guikema, J.E. et al. (2007) APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. Journal of Experimental Medicine 204, 3017-3026CrossRefGoogle ScholarPubMed
21Xue, K., Rada, C. and Neuberger, M.S. (2006) The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/- ung-/- mice. Journal of Experimental Medicine 203, 2085-2094CrossRefGoogle ScholarPubMed
22Wilson, T.M. et al. (2005) MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. Journal of Experimental Medicine 201, 637-645CrossRefGoogle ScholarPubMed
23Schrader, C.E., Vardo, J. and Stavnezer, J. (2002) Role for mismatch repair proteins Msh2, Mlh1, and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. Journal of Experimental Medicine 195, 367-373CrossRefGoogle ScholarPubMed
24Péron, S. et al. (2008) Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. Journal of Experimental Medicine 205, 2465-2472CrossRefGoogle ScholarPubMed
25Sekine, H. et al. (2007) Role for Msh5 in the regulation of Ig class switch recombination. Proceedings of the National Acadamy of Sciences of the United States of America 104, 7193-7198CrossRefGoogle ScholarPubMed
26Babbe, H. et al. (2007) The Bloom's syndrome helicase is critical for development and function of the alphabeta T-cell lineage. Molecular and Cellular Biology 27, 1947-1959CrossRefGoogle ScholarPubMed
27Pedrazzi, G. et al. (2003) The Bloom's syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6. Journal of Biological Chemistry 384, 1155-1164Google ScholarPubMed
28Pedrazzi, G. et al. (2001) Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Research 29, 4378-4386CrossRefGoogle ScholarPubMed
29Schrader, C.E. et al. (2007) Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. Journal of Immunology 179, 6064-6071CrossRefGoogle ScholarPubMed
30Yan, C.T. et al. (2007) IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478-482CrossRefGoogle ScholarPubMed
31Matsuoka, S. et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166CrossRefGoogle ScholarPubMed
32Berkovich, E., Monnat, R.J. Jr and Kastan, M.B. (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biology 9, 683-690CrossRefGoogle ScholarPubMed
33Burma, S. et al. (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. Journal of Biological Chemistry 276, 42462-42467CrossRefGoogle ScholarPubMed
34Kobayashi, J. et al. (2009) Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1. Biochemical and Biophysical Research Communications 380, 752-757CrossRefGoogle ScholarPubMed
35Ward, I.M. et al. (2004) 53BP1 is required for class switch recombination. Journal of Cell Biology 165, 459-464CrossRefGoogle Scholar
36Rooney, S. et al. (2005) Artemis-independent functions of DNA-dependent protein kinase in Ig heavy chain class switch recombination and development. Proceedings of the National Acadamy of Sciences of the United States of America 102, 2471-2475CrossRefGoogle ScholarPubMed
37Franco, S. et al. (2008) DNA-PKcs and Artemis function in the end-joining phase of immunoglobulin heavy chain class switch recombination. Journal of Experimental Medicine 205, 557-564CrossRefGoogle ScholarPubMed
38Rivera-Munoz, P. et al. (2009) Reduced immunoglobulin class switch recombination in the absence of Artemis. Blood 114, 3601-3609CrossRefGoogle ScholarPubMed
39Du, L. et al. (2008) Involvement of Artemis in non-homologous end-joining during immunoglobulin class switch recombination. Journal of Experimental Medicine 205, 3031-3040CrossRefGoogle ScholarPubMed
40Pan-Hammarstrom, Q. et al. (2005) Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. Journal of Experimental Medicine 201, 189-194CrossRefGoogle ScholarPubMed
41Helleday, T., Bryant, H.E. and Schultz, N. (2005) Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle 4, 1176-1178CrossRefGoogle ScholarPubMed
42Audebert, M., Salles, B. and Calsou, P. (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. Journal of Biological Chemistry 279, 55117-55126CrossRefGoogle Scholar
43Wang, H. et al. (2005) DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Research 65, 4020-4030CrossRefGoogle ScholarPubMed
44Robert, I., Dantzer, F. and Reina-San-Martin, B. (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. Journal of Experimental Medicine 206, 1047-1056CrossRefGoogle ScholarPubMed
45Liang, L. et al. (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Research 36, 3297-3310CrossRefGoogle Scholar
46Kaartinen, M. et al. (1983) mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. Nature 304, 320-324CrossRefGoogle ScholarPubMed
47Storb, U. (1998) Progress in understanding the mechanism and consequences of somatic hypermutation. Immunological Reviews 162, 5-11CrossRefGoogle ScholarPubMed
48Shivarov, V. et al. (2009) Molecular mechanism for generation of antibody memory. Philosophical Transactions of the Royal Society B 364, 569-575CrossRefGoogle ScholarPubMed
49Schanz, S. et al. (2009) Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation. Proceedings of the National Acadamy of Sciences of the United States of America 106, 5593-5598CrossRefGoogle ScholarPubMed
50Larson, E.D. et al. (2005) MRE11/RAD50 cleaves DNA in the AID/UNG-dependent pathway of immunoglobulin gene diversification. Molecular Cell 20, 367-375CrossRefGoogle ScholarPubMed
51Sack, S.Z. et al. (1998) Somatic hypermutation of immunoglobulin genes is independent of the Bloom's syndrome DNA helicase. Clinical and Experimental Immunology 112, 248-254CrossRefGoogle ScholarPubMed
52Schwarz, K. et al. (1996) RAG mutations in human B cell-negative SCID. Science 274, 97-99CrossRefGoogle ScholarPubMed
53Villa, A. et al. (1998) Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93, 885-896CrossRefGoogle ScholarPubMed
54Omenn, G.S. (1965) Familial reticuloendotheliosis with eosinophilia. New England Journal of Medicine 273, 427-432CrossRefGoogle ScholarPubMed
55Villa, A. et al. (2001) V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97, 81-88CrossRefGoogle ScholarPubMed
56Rieux-Laucat, F. et al. (1998) Highly restricted human T-cell repertoire beta (TCRB) chain diversity in peripheral blood and tissue-infiltrating lymphocytes in Omenn's syndrom (severe combined immunodeficiency with hypereosinophilia). Journal of Clinical Investigation 102, 312-321CrossRefGoogle Scholar
57Ehl, S. et al. (2005) A variant of SCID with specific immune responses and predominance of gamma delta T cells. Journal of Clinical Investigation 115, 3140-3148CrossRefGoogle ScholarPubMed
58de Villartay, J.P. et al. (2005) A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. Journal of Clinical Investigation 115, 3291-3299CrossRefGoogle ScholarPubMed
59Schuetz, C. et al. (2008) An immunodeficiency disease with RAG mutations and granulomas. New England Journal of Medicine 358, 2030-2038CrossRefGoogle ScholarPubMed
60Chun, H.H., and Gatti, R.A. (2004) Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amsterdam) 3, 1187-1196CrossRefGoogle ScholarPubMed
61Noordzij, J.G. et al. (2009) Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Archives of Disease in Childhood 94, 448-449CrossRefGoogle ScholarPubMed
62Lefton-Greif, M.A. et al. (2000) Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. Journal of Pediatrics 136, 225-231CrossRefGoogle ScholarPubMed
63Staples, E.R. et al. (2008) Immunodeficiency in ataxia telangiectasia is correlated strongly with the presence of two null mutations in the ataxia telangiectasia mutated gene. Clinical and Experimental Immunology 153, 214-220CrossRefGoogle ScholarPubMed
64Sanal, O. et al. (1999) Impaired IgG antibody production to pneumococcal polysaccharides in patients with ataxia-telangiectasia. Journal of Clinical Immunology 19, 326-334CrossRefGoogle ScholarPubMed
65Tangsinmankong, N. et al. (2001) Lymphocytic interstitial pneumonitis, elevated IgM concentration, and hepatosplenomegaly in ataxia-telangiectasia. Journal of Pediatrics 138, 939-941CrossRefGoogle ScholarPubMed
66Crawford, T.O. et al. (2006) Survival probability in ataxia telangiectasia. Archives of Disease in Childhood 91, 610-611CrossRefGoogle ScholarPubMed
67Giovannetti, A. et al. (2002) Skewed T-cell receptor repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia telangiectasia. Blood 100, 4082-4089CrossRefGoogle ScholarPubMed
68Reina-San-Martin, B. et al. (2004) ATM is required for efficient recombination between immunoglobulin switch regions. Journal of Experimental Medicine 200, 1103-1110CrossRefGoogle ScholarPubMed
69Weemaes, C.M. et al. (1981) A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatrica Scandinavica 70, 557-564CrossRefGoogle ScholarPubMed
70Digweed, M. and Sperling, K. (2004) Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amsterdam) 3, 1207-1217CrossRefGoogle ScholarPubMed
71Gregorek, H. et al. (2002) Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clinical and Experimental Immunology 130, 319-324CrossRefGoogle ScholarPubMed
72Xu, Y. (1999) ATM in lymphoid development and tumorigenesis. Advances in Immunology 72, 179-189CrossRefGoogle ScholarPubMed
73Kracker, S. et al. (2005) Nibrin functions in Ig class-switch recombination. Proceedings of the National Acadamy of Sciences of the United States of America 102, 1584-1589CrossRefGoogle ScholarPubMed
74Reina-San-Martin, B. et al. (2005) Genomic instability, endoreduplication, and diminished Ig class-switch recombination in B cells lacking Nbs1. Proceedings of the National Acadamy of Sciences of the United States of America 102, 1590-1595CrossRefGoogle Scholar
75Nakanishi, K. et al. (2002) Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biology 4, 913-920CrossRefGoogle ScholarPubMed
76Gennery, A.R. et al. (2004) The clinical and biological overlap between Nijmegen Breakage Syndrome and Fanconi anemia. Clinical Immunology 113, 214-219CrossRefGoogle ScholarPubMed
77Stewart, G.S. et al. (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577-587CrossRefGoogle ScholarPubMed
78Delia, D. et al. (2004) MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder. Human Molecular Genetics 13, 2155-2163CrossRefGoogle Scholar
79Fernet, M. et al. (2005) Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Human Molecular Genetics 14, 307-318CrossRefGoogle ScholarPubMed
80Khan, A.O. et al. (2008) Ophthalmic features of ataxia telangiectasia-like disorder. Journal of American Association for Pediatric Ophthalmology and Strabismus 12, 186-189CrossRefGoogle ScholarPubMed
81Uchisaka, N. et al. (2009) Two brothers with ataxia-telangiectasia-like disorder with lung adenocarcinoma. Journal of Pediatrics 155, 435-438CrossRefGoogle ScholarPubMed
82Taylor, A.M., Groom, A. and Byrd, P.J. (2004) Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amsterdam) 3, 1219-1225CrossRefGoogle ScholarPubMed
83Lahdesmaki, A. et al. (2004) Delineation of the role of the Mre11 complex in class switch recombination. The Journal of Biological Chemistry 279, 16479-16487CrossRefGoogle ScholarPubMed
84Barbi, G. et al. (1991) Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. American Journal of Medical Genetics 40, 44-45CrossRefGoogle Scholar
85Waltes, R. et al. (2009) Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. American Journal of Medical Genetics 84, 605-616Google Scholar
86Donahue, S.L. et al. (2007) Defective signal joint recombination in fanconi anemia fibroblasts reveals a role for Rad50 in V(D)J recombination. Journal of Molecular Biology 370, 449-458CrossRefGoogle ScholarPubMed
87Stewart, G.S. et al. (2007) RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proceedings of the National Acadamy of Sciences of the United States of America 104, 16910-16915CrossRefGoogle ScholarPubMed
88Stewart, G.S. et al. (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420-434CrossRefGoogle ScholarPubMed
89Difilippantonio, S. et al. (2008) 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456, 529-533CrossRefGoogle Scholar
90Manis, J.P. et al. (2004) 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nature Immunology 5, 481-487CrossRefGoogle Scholar
91Ward, I.M. et al. (2004) 53BP1 is required for class switch recombination. Journal of Cellular Biology 165, 459-464CrossRefGoogle Scholar
92van der Burg, M. et al. (2009) A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. Journal of Clinical Investigation 119, 91-98Google Scholar
93Moshous, D. et al. (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105, 177-186CrossRefGoogle ScholarPubMed
94Jones, J.F. et al. (1991) Severe combined immunodeficiency among the Navajo. I. Characterization of phenotypes, epidemiology, and population genetics. Human Biology 63, 669-682Google ScholarPubMed
95Cavazzana-Calvo, M. et al. (1993) Increased radiosensitivity of granulocyte macrophage colony-forming units and skin fibroblasts in human autosomal recessive severe combined immunodeficiency. Journal of Clinical Investigation 91, 1214-1218CrossRefGoogle ScholarPubMed
96Ege, M. et al. (2005) Omenn syndrome due to ARTEMIS mutations. Blood 105, 4179-4186CrossRefGoogle ScholarPubMed
97Moshous, D. et al. (2003) Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. Journal of Clinical Investigation 111, 381-387CrossRefGoogle Scholar
98Evans, P.M. et al. (2006) Radiation-induced delayed cell death in a hypomorphic Artemis cell line. Human Molecular Genetics 15, 1303-1311CrossRefGoogle Scholar
99Riballo, E. et al. (1999) Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Current Biology 9, 699-702CrossRefGoogle Scholar
100O'Driscoll, M. et al. (2001) DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Molecular Cell 8, 1175-1185CrossRefGoogle ScholarPubMed
101Unal, S. et al. (2009) A novel mutation in a family with DNA ligase IV deficiency syndrome. Pediatric Blood and Cancer 53, 482-484CrossRefGoogle Scholar
102van der Burg, M. et al. (2006) A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. Journal of Clinical Investigation 116, 137-145CrossRefGoogle ScholarPubMed
103Buck, D. et al. (2006) Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. European Journal of Immunology 36, 224-235CrossRefGoogle ScholarPubMed
104Ben-Omran, T.I. et al. (2005) A patient with mutations in DNA Ligase IV: clinical features and overlap with Nijmegen breakage syndrome. American Journal of Medical Genetics A 137, 283-287CrossRefGoogle Scholar
105Enders, A. et al. (2006) A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. Journal of Immunology 176, 5060-5068CrossRefGoogle ScholarPubMed
106Toita, N. et al. (2007) Epstein-Barr virus-associated B-cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome. American Journal of Medical Genetics A 143, 742-745CrossRefGoogle Scholar
107Grunebaum, E. et al. (2008) Omenn syndrome is associated with mutations in DNA ligase IV. Journal of Allergy and Clinical Immunology 122, 1219-1220CrossRefGoogle ScholarPubMed
108Buck, D. et al. (2006) Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124, 287-299CrossRefGoogle ScholarPubMed
109Ahnesorg, P. et al. (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124, 301-313CrossRefGoogle ScholarPubMed
110Dai, Y. et al. (2003) Nonhomologous end joining and V(D)J recombination require an additional factor. Proceedings of the National Acadamy of Sciences of the United States of America 100, 2462-2467CrossRefGoogle ScholarPubMed
111Faraci, M. et al. (2009) Unrelated hematopoietic stem cell transplantation for Cernunnos-XLF deficiency. Pediatric Transplantation 13, 785-789CrossRefGoogle ScholarPubMed
112Schwartz, M. et al. (2009) Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations. Public Library of Science ONE 4, e4516Google ScholarPubMed
113Berardinelli, F. et al. (2007) A case report of a patient with microcephaly, facial dysmorphism, chromosomal radiosensitivity and telomere length alterations closely resembling “Nijmegen breakage syndrome” phenotype. European Journal of Medical Genetics 50, 176-187CrossRefGoogle ScholarPubMed
114Maraschio, P. et al. (2003) Genetic heterogeneity for a Nijmegen breakage-like syndrome. Clinical Genetics 63, 283-290CrossRefGoogle ScholarPubMed
115Hiel, J.A. et al. (2001) Nijmegen breakage syndrome in a Dutch patient not resulting from a defect in NBS1. Journal of Medical Genetics 38, E19CrossRefGoogle Scholar
116Wiegant, W.W. et al. (2010) A novel radiosensitive SCID patient with a pronounced G(2)/M sensitivity. DNA Repair (Amsterdam) Jan 13, [Epub ahead of print]CrossRefGoogle Scholar
117Revy, P. et al. (2000) Activation-Induced cytidine Deaminase (AID) deficiency causes the autosomal recessive form of Hyper-IgM syndrome (HIGM2). Cell 102, 565-575CrossRefGoogle ScholarPubMed
118Quartier, P. et al. (2004) Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clinical Immunology 110, 22-29CrossRefGoogle ScholarPubMed
119Minegishi, Y. et al. (2000) Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clinical Immunology 97, 203-210CrossRefGoogle ScholarPubMed
120Ta, V.T. et al. (2003) AID mutant analyses indicate requirement for class-switch-specific cofactors. Nature Immunology 4, 843-848CrossRefGoogle ScholarPubMed
121Imai, K. et al. (2005) Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clinical Immunology 115, 277-285CrossRefGoogle ScholarPubMed
122Imai, K. et al. (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunology 4, 1023-1028CrossRefGoogle ScholarPubMed
123De Vos, M. et al. (2006) PMS2 mutations in childhood cancer. Journal of the National Cancer Institute 98, 358-361CrossRefGoogle ScholarPubMed
124Kratz, C.P. et al. (2008) Childhood T-cell non-Hodgkin's lymphoma, colorectal carcinoma and brain tumor in association with café-au-lait spots caused by a novel homozygous PMS2 mutation. Leukemia 22, 1078-1080CrossRefGoogle ScholarPubMed
125Imai, K. et al. (2003) Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination Journal of Clinical Investigation 112, 136-142CrossRefGoogle Scholar
126Péron, S. et al. (2007) A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. Journal of Experimental Medicine 204, 1207-1216CrossRefGoogle ScholarPubMed
127Durandy, A. (2009) Immunoglobulin class switch recombination: study through human natural mutants. Philosophical Transactions of the Royal Society B 364, 577-582CrossRefGoogle ScholarPubMed
128Kashef, S. et al. (2009) Isolated growth hormone deficiency in a patient with immunoglobulin class switch recombination deficiency. Journal of Investigational Allergology and Clinical Immunology 19, 233-236Google Scholar
129Ohzeki, T. et al. (1993) Immunodeficiency with increased immunoglobulin M associated with growth hormone insufficiency. Acta Paediatrica 82, 620-623CrossRefGoogle ScholarPubMed
130Webster, A.D. et al. (1992) Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 339, 1508-1509CrossRefGoogle Scholar
131Barnes, D.E. et al. (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495-503CrossRefGoogle ScholarPubMed
132Soza, S. et al. (2009) DNA ligase I deficiency leads to replication-dependent DNA damage and impacts cell morphology without blocking cell cycle progression. Molecular and Cellular Biology 29, 2032-2041CrossRefGoogle ScholarPubMed
133Petrini, J.H. et al. (1994) Normal V(D)J coding junction formation in DNA ligase I deficiency syndromes. Journal of Immunology 152, 176-178CrossRefGoogle ScholarPubMed
134Vago, R. et al. (2009) DNA ligase I and Nbs1 proteins associate in a complex and colocalize at replication factories. Cell Cycle 8, 2600-2607CrossRefGoogle Scholar
135Hütteroth, T.H., Litwin, S.D. and German, J. (1975) Abnormal immune responses of Bloom's syndrome lymphocytes in vitro. Journal of Clinical Investigation 56, 1-7CrossRefGoogle ScholarPubMed
136Van Kerckhove, C.W. et al. (1988) Bloom's syndrome. Clinical features and immunologic abnormalities of four patients. American Journal of Diseases of Children 142, 1089-1093CrossRefGoogle ScholarPubMed
137German, J. (1995) Bloom's syndrome. Dermatological Clinics 13, 7-18CrossRefGoogle ScholarPubMed
138Kondo, N. et al. (1992) Reduced secreted mu mRNA synthesis in selective IgM deficiency of Bloom's syndrome. Clinical and Experimental Immunology 88, 35-40CrossRefGoogle ScholarPubMed
139Taniguchi, N. et al. (1982) Impaired B-cell differentiation and T-cell regulatory function in four patients with Bloom's syndrome. Clinical Immunology and Immunopathology 22, 247-258CrossRefGoogle ScholarPubMed
140Hsieh, C.L., Arlett, C.F. and Lieber, M.R. (1993) V(D)J recombination in ataxia telangiectasia, Bloom's syndrome, and a DNA ligase I-associated immunodeficiency disorder. The Journal of Biological Chemistry 268, 20105-20109CrossRefGoogle Scholar
141Alter, B.P. et al. (2003) Cancer in Fanconi Anemia. Blood 101, 2072CrossRefGoogle ScholarPubMed
142Mohseni-Meybodi, A., Mozdarani, H. and Vosough, P. (2007) Cytogenetic sensitivity of G0 lymphocytes of Fanconi anemia patients and obligate carriers to mitomycin C and ionizing radiation. Cytogenetic Genome Research 119, 191-195CrossRefGoogle ScholarPubMed
143Gruhn, B. et al. (2007) Successful bone marrow transplantation in a patient with DNA ligase IV deficiency and bone marrow failure. Orphanet Journal of Rare Diseases 2, 5CrossRefGoogle Scholar
144Albert, M.H. et al. (2009) Successful Stem cell transplantation for Nijmegen breakage syndrome. Bone Marrow Transplantation Aug 17, [Epub ahead of print]CrossRefGoogle Scholar
145Dembowska-Baginska, B. et al. (2009) Non-Hodgkin lymphoma (NHL) in children with Nijmegen Breakage syndrome (NBS). Pediatric Blood and Cancer 52, 186-190CrossRefGoogle ScholarPubMed
146Benjelloun, F. et al. (2008) Stable and functional lymphoid reconstitution in artemis-deficient mice following lentiviral artemis gene transfer into hematopoietic stem cells. Molecular Therapy 16, 1490-1499CrossRefGoogle ScholarPubMed
147Lai, C.H. et al. (2004) Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proceedings of the National Acadamy of Sciences of the United States of America 101, 15676-15681CrossRefGoogle ScholarPubMed
148Welch, E.M. et al. (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87-91CrossRefGoogle ScholarPubMed
149Schuetz, J.M. et al. (2009) Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BioMed Central Medical Genetics. 10, 117CrossRefGoogle ScholarPubMed
150Margulis, V. et al. (2008) Genetic susceptibility to renal cell carcinoma: the role of DNA double-strand break repair pathway. Cancer Epidemiology, Biomarkers and Prevention 17, 2366-2373CrossRefGoogle ScholarPubMed
151Pugh, T.J. et al. (2009) Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clinical Cancer Research 15, 5008-5016CrossRefGoogle ScholarPubMed
152Okazaki, T. et al. (2008) Single-nucleotide polymorphisms of DNA damage response genes are associated with overall survival in patients with pancreatic cancer. Clinical Cancer Research 14, 2042-2048CrossRefGoogle ScholarPubMed
153Girard, P.M. et al. (2004) Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. Human Molecular Genetics 13, 2369-2376CrossRefGoogle Scholar
154Roddam, P.L. et al. (2002) Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma, a tumour characterised by aberrant class switch recombination. Journal of Medical Genetics 39, 900-905CrossRefGoogle ScholarPubMed
155Ouyang, H. et al. (1997) Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination In vivo. Journal of Experimental Medicine 186, 921-929CrossRefGoogle ScholarPubMed
156Zhu, C. et al. (1996) Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379-389CrossRefGoogle ScholarPubMed
157Blunt, T. et al. (1995) Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813-823CrossRefGoogle Scholar
158Meek, K. et al. (2001) SCID in Jack Russell terriers: a new animal model of DNA-PKcs deficiency. Journal of Immunology 167, 2142-2150CrossRefGoogle Scholar
159Shin, E.K., Perryman, L.E. and Meek, K. (1997) A kinase-negative mutation of DNA-PK(CS) in equine SCID results in defective coding and signal joint formation. Journal of Immunology 158, 3565-3569CrossRefGoogle ScholarPubMed
160Rooney, S. et al. (2002) Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Molecular Cell 10, 1379-1390CrossRefGoogle ScholarPubMed
161Barnes, D.E. et al. (1998) Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Current Biology 8, 1395-1398CrossRefGoogle ScholarPubMed
162Nijnik, A. et al. (2009) Impaired lymphocyte development and antibody class switching and increased malignancy in a murine model of DNA ligase IV syndrome. Journal of Clinical Investigation 119, 1696-1705CrossRefGoogle Scholar
163Gao, Y.M. et al. (1998) A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891-902CrossRefGoogle ScholarPubMed
164Li, G. et al. (2008) Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination. Molecular Cell 31, 631-640CrossRefGoogle ScholarPubMed
165Kobayashi, Y. et al. (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Molecular and Cellular Biology 22, 2769-2776CrossRefGoogle ScholarPubMed
166Bertocci, B. et al. (2003) Immunoglobulin kappa light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 19, 203-2011CrossRefGoogle ScholarPubMed
167Komori, T. et al. (1996) Repertoires of antigen receptors in Tdt congenitally deficient mice. International Reviews in Immunology 13, 317-325CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

The primary immunodeficiency association website can be found at: