Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T09:01:38.724Z Has data issue: false hasContentIssue false

Biochemical and molecular aspects of spectral diagnosis in calcinosis cutis

Published online by Cambridge University Press:  11 March 2014

Shan-Yang Lin*
Affiliation:
Department of Biotechnology and Pharmaceutical Technology, Yuanpei University, Hsin Chu, Taiwan, Republic of China
*
Corresponding author: Prof. Shan-Yang Lin, PhD., Lab. Pharm. Biopharm., Department of Biotechnology and Pharmaceutical Technology, Yuanpei University, Hsin Chu, Taiwan, Republic of China. + 886-3-610-2439; + 886-3-610-2328; E-mail: sylin@mail.ypu.edu.tw

Abstract

Calcinosis cutis (CC) is a type of calcinosis wherein insoluble compounds or salts deposited on the skin. Clinical diagnosis of CC is usually achieved through time consuming histopathological or immunohistochemical procedures, but it can only be empirically identified by experienced practitioners. The use of advanced vibrational spectroscopy has been recently shown to have great potential as a diagnostic technique for various diseased tissues because it analyses the chemical composition of diseased tissue rather than its anatomy and predicts disease progression. This review article includes a summary of the application of Fourier transform infrared (FT-IR) and Raman spectroscopic or microspectroscopic analysis for the rapid diagnosis and identification of the chemical composition of skin calcified deposits in patients with various CC symptoms. Both advanced techniques not only can detect the types of insoluble salts such as calcium phosphate, calcium carbonate, and monosodium urate, and β-carotene in the calcified deposits of human skin tissue but also can directly differentiate the carbonate substitution in the apatite structure of the skin calcified deposits. In particular, the combination of both vibrational techniques may provide complementary information to simultaneously assess the intact components of the calcified deposits. In the future, both FT-IR and Raman vibrational microspectroscopic techniques will become available tools to support the standard test techniques currently used in some clinical diagnoses. Molecular spectroscopy technique is rapidly changing disease diagnosis and management.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Colthup, N.B., Daly, L.H. and Wiberely, S.E. (1990) Introduction to IR and Raman Spectroscopy (3rd edn), Academic Press Inc., New York, USAGoogle Scholar
2Diem, M. (1993) Introduction to Modern Vibrational Spectroscopy, Wiley, New York, USAGoogle Scholar
3Petrich, W. (2001) Mid-infrared and Raman spectroscopy for medical diagnostics. Applied Spectroscopy Reviews 36, 181-237CrossRefGoogle Scholar
4Mantsch, H.H., Choo-Smith, L.P. and Shaw, R.A. (2002) Vibrational spectroscopy and medicine: an alliance in the making. Vibrational Spectroscopy 30, 31-41CrossRefGoogle Scholar
5Thygesen, L.G. et al. (2003) Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science & Technology 14, 50-57CrossRefGoogle Scholar
6Sathyanarayana, D.N. (2007) Vibrational Spectroscopy: theory and Applications, New Age Int., New Delhi, IndiaGoogle Scholar
7Gremlich, H.U. and Yan, B. (2001) Infrared and Raman Spectroscopy of Biological Materials, Marcel Dekker, Inc., New York, USAGoogle Scholar
8Crupi, V., Venuti, V. and Majolino, D. (2004) FT-IR Spectroscopy: an advanced tool for studying biomedical problems. Spectroscopy. 17(7), 22-30Google Scholar
9Krafft, C. (2004) Bioanalytical applications of Raman spectroscopy. Analytical and Bioanalytical Chemistry 378, 60-62CrossRefGoogle ScholarPubMed
10Lin, S.Y., Li, M.J. and Cheng, W.T. (2007) FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues Spectroscopy-An International Journal 21, 1-30CrossRefGoogle Scholar
11Lin, S.Y. (2014) Vibrational spectral biodiagnosis of ocular calcification. Applied Spectroscopy Reviews 49, 11-63CrossRefGoogle Scholar
12Blout, E.R. and Fields, M. (1948) On the infrared spectra of nucleic acids and certain of their components. Science. 107, 252-254CrossRefGoogle ScholarPubMed
13Blout, E.R. and Mellors, R.C. (1949) Infrared spectra of tissues. Science. 110, 137-138CrossRefGoogle ScholarPubMed
14Elliot, A. and Ambrose, E.J. (1950) Structure of synthetic polypeptides. Nature. 165, 921-922CrossRefGoogle Scholar
15Woernley, D.L. (1952) Infrared absorption curves for normal and neoplastic tissues and related biological substances. Cancer Research 12, 516-523Google ScholarPubMed
16Wetzel, D.L.B. and LeVine, S.M. (1998) Fourier Transform Infrared (FTIR) Microspectroscopy: a new molecular dimension for tissue or cellular imaging and in situ chemical analysis. Cell and Molecular Biology 44, 1-272Google Scholar
17Ellis, D.I. and Goodacre, R. (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst. 131, 875-885CrossRefGoogle ScholarPubMed
18Krafft, C. and Sergo, V. (2006) Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectroscopy-An International Journal 20, 195-218CrossRefGoogle Scholar
19Walsh, M.J. et al. (2007) IR microspectroscopy: potential applications in cervical cancer screening. Cancer Letters. 246, 1-11CrossRefGoogle ScholarPubMed
20Singh, B. et al. (2012) Application of vibrational microspectroscopy to biology and medicine. Current Science 102, 232-244Google Scholar
21Clark, R.J.H. and Hester, R.E. (1996) Biomedical Applications of Spectroscopy, Wiley, Chichester, UKGoogle Scholar
22Kalasinsky, V.F., Marie Jenkins, H. and Johnson, F.B. (2002) Applications of vibrational microspectroscopy to pathology specimens. Vibrational Spectroscopy 28, 199-207CrossRefGoogle Scholar
23Diem, M. et al. (2004) A decade of vibrational micro-spectroscopy of human cells and tissue. Analyst. 129, 880-885CrossRefGoogle ScholarPubMed
24Krafft, C. et al. (2009) Disease recognition by infrared and Raman spectroscopy. Journal of Biophotonics 2, 13-28CrossRefGoogle ScholarPubMed
25Severcan, F. and Haris, P.I. (2012) Vibrational spectroscopy in diagnosis and screening, IOS Press, Amsterdam, NetherlandsGoogle Scholar
26Diem, M. et al. (2012) Applications of infrared and Raman microspectroscopy of cells and tissue in medical diagnostics: present status and future promises. Spectroscopy-An International Journal 27, 463-496CrossRefGoogle Scholar
27Krafft, C. and Bird, B. (2013) Special issue: vibrational Spectroscopy in Medicine. Journal of Biophotonics 6, 1-121Google Scholar
28Carden, A. and Morris, M.D. (2000) Application of vibrational spectroscopy to the study of mineralized tissues. Journal of Biomedical Optics 5, 259-268CrossRefGoogle Scholar
29Adele, L.B. and Richard, M. (2005) Infrared spectroscopic characterization of mineralized tissues. Vibrational Spectroscopy 38, 107-114Google Scholar
30Boskey, A.L. and Mendelsohn, R. (2005) Infrared spectroscopic characterization of mineralized tissues. Vibrational Spectroscopy 38, 107-114CrossRefGoogle ScholarPubMed
31Black, A.S. and Kanat, I.O. (1985) A review of soft tissue calcifications. The Journal of foot surgery 24, 243-250Google ScholarPubMed
32Golub, E.E. (2011) Biomineralization and matrix vesicles in biology and pathology. Seminars in Immunopathology 33, 409-417CrossRefGoogle Scholar
33Chander, S. and Gordon, P. (2012) Soft tissue and subcutaneous calcification in connective tissue diseases. Current Opinion in Rheumatology 24, 158-164CrossRefGoogle ScholarPubMed
34Kirsch, T. (2012) Biomineralization–an active or passive process? Connective Tissue Research 53, 438-445CrossRefGoogle ScholarPubMed
35O'Flaherty, E.J. (2000) Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicological Sciences 55, 171-188CrossRefGoogle ScholarPubMed
36Tousimis, A.J. and Schatten, H.B. (2006) Mineralization in mammalian growth, aging, and disease. Microscopy and Microanalysis 12, 234-235CrossRefGoogle Scholar
37Chen, H. et al. (2008) Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporosis International 19, 1473-1483CrossRefGoogle ScholarPubMed
38Orimo, H. (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. Journal of Nippon Medical School. 77, 4-12CrossRefGoogle ScholarPubMed
39Bazin, D. et al. (2012) Characterization and some physicochemical aspects of pathological microcalcifications. Chemical Reviews 12, 5092-5120CrossRefGoogle Scholar
40Bazin, D. et al. (2013) Pathological calcifications: a medical diagnosis based on their physicochemical properties. La Presse Médicale S0755-4982(13)00658-1Google Scholar
41Kart, C.S., Metress, E.K. and Metress, S.P. (1992) Human Aging and Chronic Disease, Jones and Bartlett, Boston, USAGoogle Scholar
42Atzeni, F., Sarzi-Puttini, P. and Bevilacqua, M. (2006) Calcium deposition and associated chronic diseases (atherosclerosis, diffuse idiopathic skeletal hyperostosis, and others). Rheumatic Disease Clinics of North America 32, 413–26, viiiCrossRefGoogle ScholarPubMed
43Kirsch, T. (2006) Determinants of pathological mineralization. Current Opinion in Rheumatology 18, 174-180CrossRefGoogle ScholarPubMed
44Peacock, M. (2010) Calcium metabolism in health and disease. Clinical Journal of the American Society of Nephrology 5, S23-S30CrossRefGoogle ScholarPubMed
45Masuda, I. (2004) Calcium crystal deposition diseases: lessons from histochemistry. Current Opinion in Rheumatology 16, 279-281CrossRefGoogle ScholarPubMed
46Giachelli, C.M. (1999) Ectopic calcification: gathering hard facts about soft tissue mineralization. The American Journal of Pathology 154, 671-675CrossRefGoogle ScholarPubMed
47Bonucci, E. (2006) Biological Calcification: normal and Pathological Processes in the Early Stages, Springer Verlag, Heidelberg, GermanyGoogle Scholar
48Kawasaki, K., Buchanan, A.V. and Weiss, K.M. (2009) Biomineralization in humans: making the hard choices in life. Annual Review of Genetics 43, 119-142CrossRefGoogle ScholarPubMed
49Dorozhkin, S.V. (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2, 399-498CrossRefGoogle Scholar
50Dorozhkin, S.V. (2010) Bioceramics of calcium orthophosphates. Biomaterials 31, 1465-1485CrossRefGoogle ScholarPubMed
51Sader, M.S. et al. (2013) Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties. Materials Research 16, 779-784CrossRefGoogle Scholar
52Pan, H. and Darvell, B.W. (2010) Effect of carbonate on hydroxyapatite solubility. Crystal Growth & Design 10, 845-850CrossRefGoogle Scholar
53Elliott, J.C. (1994) Structure and chemistry of the apatites and other calcium orthophosphates. In: Studies in Inorganic Chemistry (Elliott, J.C., ed.), vol. 18, pp. 1-389, Elsevier, Amsterdam, NetherlandsGoogle Scholar
54LeGeros, R.Z. et al. (1995) Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. Connective Tissue Research 33, 203-209CrossRefGoogle ScholarPubMed
55Ren, F. et al. (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomaterialia 6, 2787-2796CrossRefGoogle ScholarPubMed
56Xu, G., Aksay, I.A. and Groves, J.T. (2001) Continuous crystalline carbonate apatite thin films. A biomimetic approach. Journal of the American Chemical Society 123, 2196-2203CrossRefGoogle ScholarPubMed
57Porter, A. et al. (2005) Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. Journal of Materials Science: Materials in Medicine 6, 899-907Google Scholar
58Dorozhkin, S.V. (2011) Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1–2, 121-164CrossRefGoogle Scholar
59De Aza, P.N., De Aza, A.H. and De Aza, S. (2005) Crystalline Bioceramic Materials. Boletín de la Sociedad Española de Cerámica 44, 135-145CrossRefGoogle Scholar
60Elliott, J.C., Holcomb, D.W. and Young, R.A. (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcified Tissue International 37, 372-375CrossRefGoogle ScholarPubMed
61LeGeros, R.Z. (1991) Calcium phosphates in oral biology and medicine. Monographs in Oral Science 15, 1-201CrossRefGoogle ScholarPubMed
62Wopenka, B. and Pasteris, J.D. (2005) A mineralogical perspective on the apatite in bone. Materials Science and Engineering C 25, 131-143CrossRefGoogle Scholar
63Peroos, S., Du, Z. and De Leeuw, N.H. (2006) A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite. Biomaterials 27, 2150-2161CrossRefGoogle ScholarPubMed
64Kannan, S. et al. (2011) Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomaterialia 7, 1835-1843CrossRefGoogle ScholarPubMed
65Rey, C. et al. (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcified Tissue International 45, 157-164CrossRefGoogle ScholarPubMed
66Landi, E. et al. (2004) Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials 25, 1763-1770CrossRefGoogle ScholarPubMed
67Walsh, J.S. and Fairley, J.A. (1995) Calcifying disorders of the skin. Journal of the American Academy of Dermatology 33, 693-706CrossRefGoogle ScholarPubMed
68Fernandez-Flores, A. (2011) Calcinosis cutis: critical review. Acta Dermatovenerologica Croatica 19, 43-50Google ScholarPubMed
69Reiter, N. et al. (2011) Calcinosis cutis. Part I. Diagnostic pathway. Journal of the American Academy of Dermatology 65, 1-12; quiz 13–4CrossRefGoogle ScholarPubMed
70Bhambri, A. and Del Rosso, J.Q. (2008) Calciphylaxis: a review. The Journal of Clinical and Aesthetic Dermatology 1, 38-41Google ScholarPubMed
71Meloan, S.N. and Puchtler, H. (1985) Chemical mechanisms of staining methods: von Kossa's technique. What von Kossa really wrote and a modified reaction for selective demonstration of inorganic phosphate. Journal of Histotechnology 8, 11-13CrossRefGoogle Scholar
72Rungby, J. et al. (1993) The von Kossa reaction for calcium deposits: silver lactate staining increases sensitivity and reduces background. The Histochemical Journal 25, 446-451CrossRefGoogle ScholarPubMed
73Bonewald, L.F. et al. (2003) Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcified Tissue International 72, 537-547CrossRefGoogle Scholar
74Morris, M.D. and Finney, W.F. (2004) Recent developments in Raman and infrared spectroscopy and imaging of bone tissue. Spectroscopy-An International Journal 18, 155-159CrossRefGoogle Scholar
75Stewart, S. et al. (2002) Trends in early mineralization of murine calvarial osteoblastic cultures: a Raman microscopic study. Journal of Raman Spectroscopy 33, 536-543CrossRefGoogle Scholar
76Eikje, N.S., Aizawa, K. and Ozaki, Y. (2005) Vibrational spectroscopy for molecular characterisation and diagnosis of benign, premalignant and malignant skin tumours. Biotechnology Annual Review 11, 191-225CrossRefGoogle ScholarPubMed
77Chiou, H.J. et al. (2010) Correlations among mineral components, progressive calcification process and clinical symptoms of calcific tendonitis. Rheumatology. 49, 548-555CrossRefGoogle ScholarPubMed
78Kendall, C. et al. (2011) Exploiting the diagnostic potential of biomolecular fingerprinting with vibrational spectroscopy. Faraday Discussions 149, 279-290CrossRefGoogle ScholarPubMed
79Severcan, F. et al. (2013) Progress in vibrational spectroscopy in diagnosis and screening. Biomedical Spectroscopy and Imaging 2, 73-81CrossRefGoogle Scholar
80Tosi, G. et al. (2012) Vibrational spectroscopy as a supporting technique in clinical diagnosis and prognosis of atherosclerotic carotid plaques: a review. Analytical and quantitative cytology and histology 34, 214-232Google ScholarPubMed
81Tochon-Danguy, H.J. et al. (1983) Physical and chemical analyses of the mineral substance during the development of two experimental cutaneous calcifications in rats: topical calciphylaxis and topical calcergy. Zeitschrift für Naturforschung C 38, 135-140CrossRefGoogle ScholarPubMed
82Baldet, P. et al. (1981) CRST syndrome. Ultrastructural and physico-chemical studies of calcifications. Annales De Pathologie 1, 259-269Google ScholarPubMed
83Daculsi, G., Faure, G. and Kerebel, B. (1983) Electron microscopy and microanalysis of a subcutaneous heterotopic calcification. Calcified Tissue International 35, 723-727CrossRefGoogle ScholarPubMed
84Bettoli, V. et al. (1992) Structural and chemical characterization of a cutaneous calcification. Journal of Thermal Analysis 38, 2719-2728CrossRefGoogle Scholar
85Konno, M. et al. (2003) Analysis of the calcified materials from calcinosis cutis. Japanese Journal of Clinical Chemistry 32, 249-254Google Scholar
86Cheng, W.T. et al. (2005) Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microscopy Research & Technique 68, 75-79CrossRefGoogle ScholarPubMed
87Gniadecka, M. et al. (2001) Cutaneous tophi and calcinosis diagnosed in vivo by Raman spectroscopy. British Journal of Dermatology 145, 672-674CrossRefGoogle ScholarPubMed
88Rider, L.G. and Miller, F.W. (1997) Classification and treatment of the juvenile idiopathic inflammatory myopathies. Rheumatic Disease Clinics of North America 23, 619-655CrossRefGoogle ScholarPubMed
89Feldman, B.M. et al. (2008) Juvenile dermatomyositis and other idiopathic inflammatory myopathies of childhood. The Lancet 371, 2201-2212CrossRefGoogle ScholarPubMed
90Pachman, L.M. et al. (2006) Composition of calcifications in children with juvenile dermatomyositis: association with chronic cutaneous inflammation. Arthritis & Rheumatism 54, 3345-3350CrossRefGoogle ScholarPubMed
91Eidelman, N. et al. (2009) Microstructure and mineral composition of dystrophic calcification associated with the idiopathic inflammatory myopathies. Arthritis Research & Therapy 11(5), R159CrossRefGoogle ScholarPubMed
92Liu, M.T. et al. (2005) Identification of chemical compositions of skin calcified deposit by vibrational microspectroscopies. Archives of Dermatological Research 297, 231-234CrossRefGoogle ScholarPubMed
93Penel, G. et al. (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcified Tissue International 63, 475-481CrossRefGoogle ScholarPubMed
94Paschalis, E.P. et al. (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcified Tissue International 59, 480-487CrossRefGoogle ScholarPubMed
95Rey, C. et al. (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcified Tissue International 49, 251-258CrossRefGoogle ScholarPubMed
96Fleet, M.E. (2013) The carbonate ion in hydroxyapatite: recent X-ray and infrared results. Frontiers in Bioscience (Elite Edition) 5, 643-652CrossRefGoogle ScholarPubMed
97Niu, D.M. et al. (2011) Idiopathic calcinosis cutis in a child: chemical composition of the calcified deposits. Dermatology 222, 201-205CrossRefGoogle Scholar
98Haris, P.I. and Chapman, D. (1994) Analysis of polypeptide and protein structures using Fourier transform infrared spectroscopy. Methods in Molecular Biology 22, 183-202Google ScholarPubMed
99Jackson, M. and Mantsch, H.H. (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology 30, 95-120CrossRefGoogle ScholarPubMed
100Ermakov, I.V. et al. (2004) Noninvasive selective detection of lycopene and beta-carotene in human skin using Raman spectroscopy. Journal of Biomedical Optics 9, 332-338CrossRefGoogle ScholarPubMed
101Hammond, B.R. and Wooten, B.R. (2005) Resonance Raman spectroscopic measurement of carotenoids in the skin and retina. Journal of Biomedical Optics 10(5), 054002CrossRefGoogle ScholarPubMed
102Frankenburg, E.P. et al. (1998) Biomechanical and histological evaluation of a calcium phosphate cement. The Journal of Bone & Joint Surgery 80, 1112-1124CrossRefGoogle ScholarPubMed
103Li, Q. et al. (2013) Review of spectral imaging technology in biomedical engineering: achievements and challenges. Journal of Biomedical Optics 18(10), 100901.CrossRefGoogle ScholarPubMed
104Bhargava, R. (2012) Infrared spectroscopic imaging: the next generation. Applied Spectroscopy 66, 1091-1120CrossRefGoogle ScholarPubMed
105Bindig, U. et al. (2002) Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry. Journal of Biomedical Optics 7, 100-108CrossRefGoogle ScholarPubMed
106Motz, J.T. et al. (2006) In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. Journal of Biomedical Optics 11(2), 021003CrossRefGoogle ScholarPubMed
107Adar, F. et al. (2003) Raman and FTIR microscopy on a single microscope: demonstration of the synergism of collecting complementary vibrational spectra from the same spot. Microscopy and Microanalysis 9, 1112-1113CrossRefGoogle Scholar
108Krishna, C.M. et al. (2006) Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines. Biopolymers 82, 462-470CrossRefGoogle ScholarPubMed
109Lasch, P. and Knwipp, J. (2008) Biomedical Vibrational Spectroscopy, John Wiley & Sons, Hobaken, New Jersey, USACrossRefGoogle Scholar
110Srinivasan, G. (2010) Vibrational Spectroscopic Imaging for Biomedical Applications, The McGraw-Hill Companies, Inc., New York, USAGoogle Scholar
111Surmacki, J., Musial, J., Kordek, R. and Abramczyk, H. (2013) Raman imaging at biological interfaces: applications in breast cancer diagnosis. Molecular Cancer 12, 48CrossRefGoogle ScholarPubMed
112Matousek, P. and Stone, N. (2013) Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. Journal of Biophotonics 6, 7-19CrossRefGoogle ScholarPubMed
113Pelletier, M.J. (2013) Sensitivity-enhanced transmission Raman spectroscopy. Applied Spectroscopy 67, 829-840CrossRefGoogle ScholarPubMed
114Sharma, B. et al. (2013) Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. Journal of the American Chemical Society 135, 17290-17293CrossRefGoogle ScholarPubMed