Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T20:14:25.259Z Has data issue: false hasContentIssue false

Electrophysiological markers of genetic risk for attention deficit hyperactivity disorder

Published online by Cambridge University Press:  23 March 2011

Charlotte Tye*
Affiliation:
MRC Social Genetic Developmental Psychiatry Centre (SGDP), Institute of Psychiatry, London, UK.
Gráinne McLoughlin
Affiliation:
MRC Social Genetic Developmental Psychiatry Centre (SGDP), Institute of Psychiatry, London, UK.
Jonna Kuntsi
Affiliation:
MRC Social Genetic Developmental Psychiatry Centre (SGDP), Institute of Psychiatry, London, UK.
Philip Asherson
Affiliation:
MRC Social Genetic Developmental Psychiatry Centre (SGDP), Institute of Psychiatry, London, UK.
*
*Corresponding author: Charlotte Tye, MRC Social Genetic Developmental Psychiatry Centre (SGDP), Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK. E-mail: charlotte.tye@kcl.ac.uk

Abstract

Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder with complex genetic aetiology. The identification of candidate intermediate phenotypes may facilitate the detection of susceptibility genes and neurobiological mechanisms underlying the disorder. Electroencephalography (EEG) is an ideal neuroscientific approach, providing a direct measurement of neural activity that demonstrates reliability, developmental stability and high heritability. This systematic review evaluates the utility of a subset of electrophysiological measures as potential intermediate phenotypes for ADHD: quantitative EEG indices of arousal and intraindividual variability, and functional investigations of attention, inhibition and performance monitoring using the event-related potential (ERP) technique. Each measure demonstrates consistent and meaningful associations with ADHD, a degree of genetic overlap with ADHD and potential links to specific genetic variants. Investigations of the genetic and environmental contributions to EEG/ERP and shared genetic overlap with ADHD might enhance molecular genetic studies and provide novel insights into aetiology. Such research will aid in the precise characterisation of the clinical deficits seen in ADHD and guide the development of novel intervention and prevention strategies for those at risk.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders (4th edn), Washington, DCGoogle Scholar
2Polanczyk, G. and Jensen, P. (2008) Epidemiologic considerations in attention deficit hyperactivity disorder: a review and update. Child and Adolescent Psychiatric Clinics of North America 17, 245-260CrossRefGoogle Scholar
3Faraone, S.V. et al. (2006) Diagnosing adult attention deficit hyperactivity disorder: are late onset and subthreshold diagnoses valid? American Journal of Psychiatry 163, 1720-1729CrossRefGoogle ScholarPubMed
4Faraone, S.V., Biederman, J. and Monuteaux, M.C. (2000) Attention-deficit disorder and conduct disorder in girls: evidence for a familial subtype. Biological Psychiatry 48, 21-29CrossRefGoogle ScholarPubMed
5Faraone, S.V. et al. (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry 57, 1313-1323CrossRefGoogle ScholarPubMed
6Goodman, R. and Stevenson, J. (1989) A twin study of hyperactivity–II. The aetiological role of genes, family relationships and perinatal adversity. Journal of Child Psychology & Psychiatry & Allied Disciplines 30, 691-709CrossRefGoogle ScholarPubMed
7Biederman, J. et al. (1993) Convergence of the child behavior checklist with structured interview-based psychiatric diagnoses of ADHD children with and without comorbidity. Journal of Child Psychology and Psychiatry 34, 1241-1251CrossRefGoogle ScholarPubMed
8Chen, W. et al. (2008) DSM-IV combined type ADHD shows familial association with sibling trait scores: a sampling strategy for QTL linkage. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics 147B, 1450-1460CrossRefGoogle ScholarPubMed
9Levy, F. et al. (1997) Attention-deficit hyperactivity disorder: a category or a continuum? Genetic Analysis of a Large-Scale Twin Study. In 737-744Google ScholarPubMed
10McLoughlin, G. et al. (2007) Genetic support for the dual nature of attention deficit hyperactivity disorder: substantial genetic overlap between the inattentive and hyperactive-impulsive components. Journal of Abnormal Child Psychology 35, 999-1008CrossRefGoogle ScholarPubMed
11Plomin, R., Owen, M. and McGuffin, P. (1994) The genetic basis of complex human behaviors. Science 264, 1733-1739CrossRefGoogle ScholarPubMed
12Swanson, J. et al. (2007) Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychology Review 17, 39-59CrossRefGoogle ScholarPubMed
13Li, D. et al. (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics 15, 2276-2284CrossRefGoogle ScholarPubMed
14Brookes, K.J. et al. (2008) Association of ADHD with genetic variants in the 5prime-region of the dopamine transporter gene: evidence for allelic heterogeneity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 147B, 1519-1523CrossRefGoogle ScholarPubMed
15Asherson, P. et al. (2007) Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. American Journal of Psychiatry 164, 674-677CrossRefGoogle ScholarPubMed
16Maher, B.S. et al. (2002) Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatric Genetics 12, 207-215CrossRefGoogle ScholarPubMed
17Purper-Ouakil, D. et al. (2005) Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatric Genetics 15, 53-59CrossRefGoogle ScholarPubMed
18Yang, B. et al. (2007) A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3prime-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 144B, 541-550CrossRefGoogle ScholarPubMed
19Gizer, I., Ficks, C. and Waldman, I. (2009) Candidate gene studies of ADHD: a meta-analytic review. Human Genetics 126, 51-90CrossRefGoogle ScholarPubMed
20Lucki, I. (1998) The spectrum of behaviors influenced by serotonin. Biological Psychiatry 44, 151-162CrossRefGoogle ScholarPubMed
21Spivak, B. et al. (1999) Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity diiorder. Acta Psychiatrica Scandinavica 99, 300-304CrossRefGoogle Scholar
22Kuntsi, J. et al. (2006) The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behavioral and Brain Functions 2, 27CrossRefGoogle ScholarPubMed
23Neale, B.M. et al. (2008) Genome-wide association scan of attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 147B, 1337-1344CrossRefGoogle ScholarPubMed
24Neale, B.M. et al. (2010) Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry 49, 884-897CrossRefGoogle ScholarPubMed
25Brookes, K. et al. (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Molecular Psychiatry 11, 934-953CrossRefGoogle ScholarPubMed
26Lasky-Su, J. et al. (2008) Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 147B, 1345-1354CrossRefGoogle ScholarPubMed
27Lesch, K.P. et al. (2008) Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. Journal of Neural Transmission 115, 1573-1585CrossRefGoogle ScholarPubMed
28Franke, B., Neale, B.M. and Faraone, S.V. (2009) Genome-wide association studies in ADHD. Human Genetics 126, 13-50CrossRefGoogle ScholarPubMed
29Zhou, K. et al. (2008) Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 147B, 1392-1398CrossRefGoogle ScholarPubMed
30Elia, J. et al. (2010) Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Molecular Psychiatry 15, 637-646CrossRefGoogle ScholarPubMed
31Williams, N.M. et al. (2010) Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376, 1401-1408CrossRefGoogle ScholarPubMed
32Gottesman, II and Gould, T.D. (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636-645CrossRefGoogle ScholarPubMed
33Kuntsi, J. et al. (2006) Reaction time, inhibition, working memory and performance: genetic influences and their interpretation. Psychological Medicine 36, 1613-1624CrossRefGoogle ScholarPubMed
34Walters, J.T.R. and Owen, M.J. (2007) Endophenotypes in psychiatric genetics. Molecular Psychiatry 12, 886-890CrossRefGoogle ScholarPubMed
35Kovas, Y. and Plomin, R. (2006) Generalist genes: implications for the cognitive sciences. Trends in Cognitive Sciences 10, 198-203CrossRefGoogle ScholarPubMed
36de Geus, E.J.C. (2002) Introducing genetic psychophysiology. Biological Psychology 61, 1-10CrossRefGoogle ScholarPubMed
37Ronald, A. et al. (2008) Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. Journal of Child Psychology and Psychiatry 49, 535-542CrossRefGoogle Scholar
38Willcutt, E.G. et al. (2007) Understanding comorbidity: a twin study of reading disability and attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 144B, 709-714CrossRefGoogle ScholarPubMed
39Kendler, K.S. and Neale, M.C. (2010) Endophenotype: a conceptual analysis. Molecular Psychiatry 15, 789-797CrossRefGoogle ScholarPubMed
40Green, A.E. et al. (2008) Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nature Reviews. Neuroscience 9, 710-720CrossRefGoogle ScholarPubMed
41Munafò, M.R., Brown, S.M. and Hariri, A.R. (2008) Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biological Psychiatry 63, 852-857CrossRefGoogle ScholarPubMed
42Kuntsi, J. et al. (2010) Separation of cognitive impairments in attention deficit hyperactivity disorder into two familial factors. Archives of General Psychiatry 67, 1159-1166CrossRefGoogle Scholar
43Doyle, A. et al. (2005) Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? Journal of Child Psychology and Psychiatry 46, 774-803CrossRefGoogle ScholarPubMed
44Castellanos, F. and Tannock, R. (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews. Neuroscience 3, 617-628CrossRefGoogle ScholarPubMed
45Kuntsi, J., McLoughlin, G. and Asherson, P. (2006) Attention deficit hyperactivity disorder. NeuroMolecular Medicine 8, 461-484CrossRefGoogle ScholarPubMed
46McLoughlin, G. et al. (2005) Electrophysiological parameters in psychiatric research: ADHD. Psychiatry 4, 14-18CrossRefGoogle Scholar
47Albrecht, B. et al. (2008) Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype. Biological Psychiatry 64, 615-625CrossRefGoogle ScholarPubMed
48McLoughlin, G. et al. (2009) Performance monitoring is altered in adult ADHD: a familial event-related potential investigation. Neuropsychologia 47, 3134-3142CrossRefGoogle ScholarPubMed
49Malmivuo, J. and Plonsey, R. (1995) Bioelectromagnetism, Oxford University Press, New YorkGoogle Scholar
50Williams, L.M. et al. (2005) The test–retest reliability of a standardized neurocognitive and neurophysiological test battery: “Neuromarker”. International Journal of Neuroscience 115, 1605-1630CrossRefGoogle ScholarPubMed
51Barry, R.J., Clarke, A.R. and Johnstone, S.J. (2003) A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology 114, 171-183CrossRefGoogle ScholarPubMed
52Bresnahan, S.M., Anderson, J.W. and Barry, R.J. (1999) Age-related changes in quantitative EEG in attention-deficit/hyperactivity disorder. Biological Psychiatry 46, 1690-1697CrossRefGoogle ScholarPubMed
53Chabot, R.J. and Serfontein, G. (1996) Quantitative electroencephalographic profiles of children with attention deficit disorder. Biological Psychiatry 40, 951-963CrossRefGoogle ScholarPubMed
54Clarke, A.R. et al. (2001) EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology 112, 2098-2105CrossRefGoogle ScholarPubMed
55Janzen, T. et al. (1995) Differences in baseline EEG measures for ADD and normally achieving preadolescent males. Applied Psychophysiology and Biofeedback 20, 65-82Google ScholarPubMed
56Snyder, S.M. and Hall, J.R. (2006) A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. Journal of Clinical Neurophysiology 23, 440-455CrossRefGoogle ScholarPubMed
57Clarke, A.R. et al. (2001) Excess beta activity in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Research 103, 205-218CrossRefGoogle ScholarPubMed
58Koehler, S. et al. (2009) Increased EEG power density in alpha and theta bands in adult ADHD patients. Journal of Neural Transmission 116, 97-104CrossRefGoogle ScholarPubMed
59Makeig, S. and Jung, T.-P. (1996) Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research 4, 15-25CrossRefGoogle ScholarPubMed
60Yordanova, J. et al. (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder – evidence from event-related gamma oscillations. Clinical Neurophysiology 112, 1096-1108CrossRefGoogle ScholarPubMed
61Benninger, C., Matthis, P. and Scheffner, D. (1984) EEG development of healthy boys and girls. Results of a longitudinal study. Electroencephalography and Clinical Neurophysiology 57, 1-12CrossRefGoogle ScholarPubMed
62Hudspeth, W.J. and Pribram, K.H. (1992) Psychophysiological indices of cerebral maturation. International Journal of Psychophysiology 12, 19-29CrossRefGoogle ScholarPubMed
63Mann, C.A. et al. (1992) Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: controlled study with clinical implications. Pediatric Neurology 8, 30-36CrossRefGoogle ScholarPubMed
64McGuire, K.A. et al. (1998) Genetic influences on the spontaneous EEG: an examination of 15-year-old and 17-year-old twins. Developmental Neuropsychology 14, 7-18CrossRefGoogle Scholar
65Christian, J.C. et al. (1996) Genetic analysis of the resting electroencephalographic power spectrum in human twins. Psychophysiology 33, 584-591CrossRefGoogle ScholarPubMed
66Lykken, D.T., Tellegen, A. and Iacono, W.G. (1982) EEG spectra in twins: evidence for a neglected mechanism of genetic determination. Physiological Psychology 10, 60-65CrossRefGoogle Scholar
67Beijsterveldt, C.E.M.v., Geus, E.J.C.d. and Boomsma, D.I. (1996) Heritability of human brain functioning as assessed by electroencephalography. American Journal of Human Genetics 58, 562-573Google ScholarPubMed
68Van Baal, G.C.M., De Geus, E.J.C. and Boomsma, D.I. (1996) Genetic architecture of EEG power spectra in early life. Electroencephalography and Clinical Neurophysiology 98, 502-514CrossRefGoogle ScholarPubMed
69van Beijsterveldt, C.E.M. and van Baal, G.C.M. (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biological Psychology 61, 111-138CrossRefGoogle ScholarPubMed
70Zietsch, B.P. et al. (2007) Common and specific genetic influences on EEG power bands delta, theta, alpha, and beta. Biological Psychology 75, 154-164CrossRefGoogle ScholarPubMed
71Tang, Y. et al. (2007) Heritability of bipolar EEG spectra in a large sib-pair population. Behavior Genetics 37, 302-313CrossRefGoogle Scholar
72Loo, S.K. et al. Familial clustering and DRD4 effects on electroencephalogram measures in multiplex families with attention deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry 49, 368-377Google Scholar
73Loo, S.K. and Smalley, S.L. (2008) Preliminary report of familial clustering of EEG measures in ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 147B, 107-109CrossRefGoogle ScholarPubMed
74Basar, E. and Güntekin, B. (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research 1235, 172-193CrossRefGoogle ScholarPubMed
75Loo, S.K.P.D. et al. (2003) Functional effects of the DAT1 polymorphism on EEG measures in ADHD. Journal of the American Academy of Child & Adolescent Psychiatry 42, 986-993CrossRefGoogle ScholarPubMed
76Clarke, A.R. et al. (2003) Effects of stimulant medications on the EEG of children with attention-deficit/hyperactivity disorder predominantly inattentive type. International Journal of Psychophysiology 47, 129-137CrossRefGoogle ScholarPubMed
77Loo, S.K. et al. (2004) EEG correlates of methylphenidate response in ADHD: association with cognitive and behavioral measures. Journal of Clinical Neurophysiology 21, 457-464CrossRefGoogle ScholarPubMed
78Debener, S. et al. (2003) Top-down attentional processing enhances auditory evoked gamma band activity. NeuroReport 14, 683-686CrossRefGoogle ScholarPubMed
79Herrmann, C.S. and Mecklinger, A. (2001) Gamma activity in human EEG is related to high speed memory comparisons during object selective attention. Visual Cognition 8, 593-608CrossRefGoogle Scholar
80Demiralp, T. et al. (2007) DRD4 and DAT1 Polymorphisms Modulate Human Gamma Band Responses. Cereb. Cortex 17, 1007-1019CrossRefGoogle ScholarPubMed
81Klein, C. et al. (2006) Intra-subject variability in attention-deficit hyperactivity disorder. Biological Psychiatry 60, 1088-1097CrossRefGoogle ScholarPubMed
82Nigg, J.T. et al. (2004) Evaluating the endophenotype model of ADHD neuropsychological deficit: results for parents and siblings of children with ADHD combined and inattentive subtypes. Journal of Abnormal Psychology 113, 614-625CrossRefGoogle ScholarPubMed
83Andreou, P. et al. (2007) Reaction time performance in ADHD: improvement under fast-incentive condition and familial effects. Psychological Medicine 37, 1703-1715CrossRefGoogle ScholarPubMed
84Uebel, H. et al. Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. Journal of Child Psychology and Psychiatry 51, 210-218CrossRefGoogle Scholar
85Bidwell, L.C. et al. (2007) Testing for Neuropsychological Endophenotypes in Siblings Discordant for Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry 62, 991-998CrossRefGoogle ScholarPubMed
86Kuntsi, J. and Stevenson, J. (2001) Psychological mechanisms in hyperactivity: II. The role of genetic factors. The Journal of Child Psychology and Psychiatry and Allied Disciplines 42, 211-219CrossRefGoogle ScholarPubMed
87Kuntsi, J., Oosterlaan, J. and Stevenson, J. (2001) Psychological mechanisms in hyperactivity: i response inhibition deficit, working memory impairment, delay aversion, or something else? The Journal of Child Psychology and Psychiatry and Allied Disciplines 42, 199-210CrossRefGoogle ScholarPubMed
88Wood, A. et al. (2010) The relationship between ADHD and key cognitive phenotypes is not mediated by shared familial effects with IQ. Psychological Medicine 4, 1-11Google Scholar
89Wood, A.C. et al. (2010) Separation of genetic influences on attention deficit hyperactivity disorder symptoms and reaction time performance from those on IQ. Psychological Medicine 40, 1027-1037CrossRefGoogle ScholarPubMed
90Bellgrove, M.A. et al. (2005) Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia 43, 1847-1857CrossRefGoogle ScholarPubMed
91O'Connell, R.G. et al. (2004) Reduced electrodermal response to errors predicts poor sustained attention performance in attention deficit hyperactivity disorder. NeuroReport 15, 2535-2538CrossRefGoogle ScholarPubMed
92Sergeant, J.A. (2005) modeling attention-deficit/hyperactivity disorder: a critical appraisal of the cognitive-energetic model. Biological Psychiatry 57, 1248-1255CrossRefGoogle ScholarPubMed
93Johnson, K. et al. (2007) Dissociation in performance of children with ADHD and high-functioning autism on a task of sustained attention. Neuropsychologia 45, 2234-2245CrossRefGoogle ScholarPubMed
94Johnson, K.A. et al. (2007) Response variability in attention deficit hyperactivity disorder: evidence for neuropsychological heterogeneity. Neuropsychologia 45, 630-638CrossRefGoogle ScholarPubMed
95O'Connell, R.G. et al. (2009) Two types of action error: electrophysiological evidence for separable inhibitory and sustained attention neural mechanisms producing error on Go/No-go tasks. Journal of Cognitive Neuroscience 21, 93-104CrossRefGoogle ScholarPubMed
96Raichle, M.E. et al. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America 98, 676-682CrossRefGoogle ScholarPubMed
97Rösler, F., Heil, M. and Röder, B. (1997) Slow negative brain potentials as reflections of specific modular resources of cognition. Biological Psychology 45, 109-141CrossRefGoogle ScholarPubMed
98Vanhatalo, S. et al. (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proceedings of the National Academy of Sciences of the United States of America 101, 5053-5057CrossRefGoogle ScholarPubMed
99He, B.J. and Raichle, M.E. (2009) The fMRI signal, slow cortical potential and consciousness. Trends in Cognitive Sciences 13, 302-309CrossRefGoogle ScholarPubMed
100Castellanos, F.X. et al. (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry 57, 1416-1423CrossRefGoogle ScholarPubMed
101Di Martino, A. et al. (2008) Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biological Psychiatry 64, 607-614CrossRefGoogle ScholarPubMed
102Sonuga-Barke, E.J.S. and Castellanos, F.X. (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neuroscience and Biobehavioral Reviews 31, 977-986CrossRefGoogle ScholarPubMed
103Fox, M.D. et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America 102, 9673-9678CrossRefGoogle ScholarPubMed
104Giambra, L.M. (1995) A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Consciousness and Cognition 4, 1-21CrossRefGoogle ScholarPubMed
105Castellanos, F.X. et al. (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry 63, 332-337CrossRefGoogle ScholarPubMed
106Fassbender, C. et al. (2009) A lack of default network suppression is linked to increased distractibility in ADHD. Brain Research 1273, 114-128CrossRefGoogle ScholarPubMed
107Tian, L. et al. (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neuroscience Letters 400, 39-43CrossRefGoogle ScholarPubMed
108Uddin, L.Q. et al. (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods 169, 249-254CrossRefGoogle ScholarPubMed
109Eichele, T. et al. (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the United States of America 105, 6173-6178CrossRefGoogle ScholarPubMed
110Kelly, A.M.C. et al. (2004) Prefrontal-subcortical dissociations underlying inhibitory control revealed by event-related fMRI. European Journal of Neuroscience 19, 3105-3112CrossRefGoogle ScholarPubMed
111Suskauer, S.J. et al. (2008) fMRI of intrasubject variability in ADHD: anomalous premotor activity with prefrontal compensation. Journal of the American Academy of Child & Adolescent Psychiatry 47, 1141-1150CrossRefGoogle ScholarPubMed
112Weissman, D.H. et al. (2006) The neural bases of momentary lapses in attention. Nature Neuroscience 9, 971-978CrossRefGoogle ScholarPubMed
113Khader, P. et al. (2008) On the relationship between slow cortical potentials and BOLD signal changes in humans. International Journal of Psychophysiology 67, 252-261CrossRefGoogle ScholarPubMed
114Helps, S. et al. (2008) Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. Journal of Neural Transmission 115, 279-285CrossRefGoogle ScholarPubMed
115Helps, S.K. et al. (2010) The attenuation of very low frequency brain oscillations in transitions from a rest state to active attention. Journal of Psychophysiology 23, 191-198CrossRefGoogle Scholar
116Helps, S.K. et al. (2010) Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain Research 1322, 134-143CrossRefGoogle ScholarPubMed
117Glahn, D.C. et al. (2010) Genetic control over the resting brain. Proceedings of the National Academy of Sciences 107, 1223-1228CrossRefGoogle ScholarPubMed
118Meyer-Lindenberg, A. (2009) Neural connectivity as an intermediate phenotype: Brain networks under genetic control. In, pp. 1938-1946. Wiley Subscription Services, Inc., A Wiley CompanyGoogle ScholarPubMed
119Liu, B. et al. (2010) Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. Journal of Neuroscience 30, 64-69CrossRefGoogle ScholarPubMed
120French, C.C. and Beaumont, J.G. (1984) A critical review of EEG coherence studies of hemisphere function. International Journal of Psychophysiology 1, 241-254CrossRefGoogle ScholarPubMed
121Hagemann, D. et al. (2002) Does resting electroencephalograph asymmetry reflect a trait? An application of latent state-trait theory. Journal of Personality and Social Psychology 82, 619-641CrossRefGoogle ScholarPubMed
122Barry, R.J. et al. (2002) EEG coherence in attention-deficit/hyperactivity disorder: a comparative study of two DSM-IV types. Clinical Neurophysiology 113, 579-585CrossRefGoogle ScholarPubMed
123Chabot, R.J. et al. (1999) Behavioral and electrophysiologic predictors of treatment response to stimulants in children with attention disorders. Journal of Child Neurology 14, 343-351CrossRefGoogle ScholarPubMed
124Murias, M. et al. (2007) Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry 62, 270-273CrossRefGoogle ScholarPubMed
125Tcheslavski, G.V. and Beex, A.A. (2006) Phase synchrony and coherence analyses of EEG as tools to discriminate between children with and without attention deficit disorder. Biomedical Signal Processing and Control 1, 151-161CrossRefGoogle Scholar
126Thatcher, R.W., Krause, P.J. and Hrybyk, M. (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalography and Clinical Neurophysiology 64, 123-143CrossRefGoogle ScholarPubMed
127Montagu, J.D. (1975) The hyperkinetic child: a behavioural, electrodermal and EEG investigation. Developmental Medicine and Child Neurology 17, 299-305CrossRefGoogle Scholar
128Baving, L., Laucht, M. and Schmidt, M.H. (1999) Atypical frontal brain activation in ADHD: preschool and elementary school boys and girls. In, pp. 1363-1371CrossRefGoogle Scholar
129Hale, T.S. et al. (2009) Atypical alpha asymmetry in adults with ADHD. Neuropsychologia 47, 2082-2088CrossRefGoogle ScholarPubMed
130Stassen, H.H. et al. (1988) Genetic determination of the human EEG. Survey of recent results on twins reared together and apart. Human Genetics 80, 165-176CrossRefGoogle ScholarPubMed
131Van Beijsterveldt, C.E.M. and Boomsma, D.I. (1994) Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Human Genetics 94, 319-330CrossRefGoogle ScholarPubMed
132Van Beijsterveldt, C.E.M. et al. (1998) Genetic and environmental influences on EEG coherence. Behavior Genetics 28, 443-453CrossRefGoogle ScholarPubMed
133van Baal, G.C.M., de Geus, E.J.C. and Boomsma, D.I. (1998) Genetic influences on EEG coherence in 5-year-old twins. Behavior Genetics 28, 9-19CrossRefGoogle ScholarPubMed
134Chorlian, D.B. et al. (2007) Heritability of EEG coherence in a large sib-pair population. Biological Psychology 75, 260-266CrossRefGoogle Scholar
135Anokhin, A.P., Heath, A.C. and Myers, E. (2006) Genetic and environmental influences on frontal EEG asymmetry: a twin study. Biological Psychology 71, 289-295CrossRefGoogle ScholarPubMed
136Posthuma, D. et al. (2005) Genetic components of functional connectivity in the brain: The heritability of synchronization likelihood. In, pp. 191-198. Wiley Subscription Services, Inc., A Wiley CompanyGoogle ScholarPubMed
137Smit, D. et al. (2010) Endophenotypes in a dynamically connected brain. Behavior Genetics 40, 167-177CrossRefGoogle Scholar
138Smit, D.J.A. et al. (2008) Heritability of ‘small-world’ networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. In, pp. 1368-1378. Wiley Subscription Services, Inc., A Wiley CompanyGoogle Scholar
139Hale, T.S. et al. (2010) ADHD familial loading and abnormal EEG alpha asymmetry in children with ADHD. Journal of Psychiatric Research 44, 605-615CrossRefGoogle ScholarPubMed
140Bismark, A.W. et al. (2010) Polymorphisms of the HTR1a allele are linked to frontal brain electrical asymmetry. Biological Psychology 83, 153-158CrossRefGoogle ScholarPubMed
141Shim, S.-H. et al. (2010) A case-control association study of serotonin 1A receptor gene and tryptophan hydroxylase 2 gene in attention deficit hyperactivity disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34, 974-979CrossRefGoogle ScholarPubMed
142Porjesz, B. and Rangaswamy, M. (2007) Neurophysiological endophenotypes, CNS disinhibition, and risk for alcohol dependence and related disorders. TheScientificWorldJournal 7(Suppl 2), 131-141CrossRefGoogle ScholarPubMed
143Lee, T.-W. et al. (2011) The effects of catechol-O-methyl-transferase polymorphism Val158Met on functional connectivity in healthy young females: a resting EEG study. Brain Research 1377, 21-31Google Scholar
144McLoughlin, G. et al. (2010) Electrophysiological evidence for abnormal preparatory states and inhibitory processing in adult ADHD. Behavioral and Brain Functions 6, 66CrossRefGoogle ScholarPubMed
145Sonuga-Barke, E.J.S. (2002) Psychological heterogeneity in AD/HD – a dual pathway model of behaviour and cognition. Behavioural Brain Research 130, 29-36CrossRefGoogle ScholarPubMed
146Marco, R. et al. (2009) Delay and reward choice in ADHD: an experimental test of the role of delay aversion. Neuropsychology 23, 367-380CrossRefGoogle ScholarPubMed
147Paloyelis, Y., Asherson, P. and Kuntsi, J. (2009) Are ADHD symptoms associated with delay aversion or choice impulsivity? A general population study. Journal of the American Academy of Child & Adolescent Psychiatry 48, 837-846CrossRefGoogle ScholarPubMed
148Nieuwenhuis, S. et al. (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience 3, 17-26CrossRefGoogle Scholar
149Donkers, F.C.L. and van Boxtel, G.J.M. (2004) The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition 56, 165-176CrossRefGoogle Scholar
150Fallgatter, A.J., Brandeis, D. and Strik, W.K. (1997) A robust assessment of the NoGo-anteriorisation of P300 microstates in a cued continuous performance test. Brain Topography 9, 295-302CrossRefGoogle Scholar
151van Leeuwen, T.H. et al. (1998) The continuous performance test revisited with neuroelectric mapping: impaired orienting in children with attention deficits. Behavioural Brain Research 94, 97-110CrossRefGoogle ScholarPubMed
152Fallgatter, A.J. et al. (2001) Test-retest reliability of electrophysiological parameters related to cognitive motor control. Clinical Neurophysiology 112, 198-204CrossRefGoogle ScholarPubMed
153Fallgatter, A.J. et al. (2002) Long-term reliability of electrophysiologic response control parameters. Journal of Clinical Neurophysiology 19, 61-66CrossRefGoogle ScholarPubMed
154Willcutt, E. et al. (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry 57, 1336-1346CrossRefGoogle ScholarPubMed
155Valko, L. et al. (2010) Differences in neurophysiological markers of inhibitory and temporal processing deficits in children and adults with ADHD. Journal of Psychophysiology 23, 235-246CrossRefGoogle Scholar
156Szuromi, B. et al. (2010) P300 deficits in adults with attention deficit hyperactivity disorder: a meta-analysis. Psychological Medicine 20, 1-10Google Scholar
157Banaschewski, T. et al. (2004) Questioning inhibitory control as the specific deficit of ADHD – evidence from brain electrical activity. Journal of Neural Transmission 111, 841-864CrossRefGoogle ScholarPubMed
158Verbaten, M. et al. (1994) Methylphenidate influences on both early and late ERP waves of ADHD children in a continuous performance test. Journal of Abnormal Child Psychology 22, 561-578CrossRefGoogle Scholar
159Brandeis, D. et al. (2002) Multicenter P300 brain mapping of impaired attention to cues in hyperkinetic children. In, pp. 990-998CrossRefGoogle Scholar
160Banaschewski, T. et al. (2003) Association of ADHD and conduct disorder – brain electrical evidence for the existence of a distinct subtype. Journal of Child Psychology and Psychiatry 44, 356-376CrossRefGoogle ScholarPubMed
161Fallgatter, A.J. et al. (2004) Altered response control and anterior cingulate function in attention-deficit/hyperactivity disorder boys. Clinical Neurophysiology 115, 973-981CrossRefGoogle ScholarPubMed
162Wiersema, R. et al. (2006) Event rate and event-related potentials in ADHD. Journal of Child Psychology and Psychiatry 47, 560-567CrossRefGoogle ScholarPubMed
163Albrecht, B. et al. (2005) Response inhibition deficits in externalizing child psychiatric disorders: an ERP-study with the Stop-task. Behavioral and Brain Functions 1, 22CrossRefGoogle ScholarPubMed
164Dien, J., Spencer, K.M. and Donchin, E. (2004) Parsing the late positive complex: mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology 41, 665-678CrossRefGoogle ScholarPubMed
165Anokhin, A.P., Heath, A.C. and Myers, E. (2004) Genetics, prefrontal cortex, and cognitive control: a twin study of event-related brain potentials in a response inhibition task. Neuroscience Letters 368, 314-318CrossRefGoogle Scholar
166Bestelmeyer, P.E.G. et al. (2009) The P300 as a possible endophenotype for schizophrenia and bipolar disorder: evidence from twin and patient studies. Psychiatry Research 169, 212-219CrossRefGoogle ScholarPubMed
167Smit, D. et al. (2007) Genetic contribution to the P3 in young and middle-aged adults. Twin Research and Human Genetics 10, 335-347CrossRefGoogle Scholar
168Carlson, S.R. and Iacono, W.G. (2006) Heritability of P300 amplitude development from adolescence to adulthood. In, pp. 470-480. Blackwell Publishing IncGoogle ScholarPubMed
169Smit, J. et al. (2009) Phenotypic and genetic correlations between evoked EEG/ERP measures during the response anticipation period of a delayed response task. In, pp. 344-356. Blackwell Publishing IncGoogle ScholarPubMed
170Wild-Wall, N. et al. (2009) Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD). International Journal of Psychophysiology 74, 19-27CrossRefGoogle ScholarPubMed
171McLoughlin, G. et al. (2007) ERP endophenotypes of adult ADHD. In 47th Annual Meeting of the Society for Psychophysiological Research, S47-S47, Blackwell Publishing, Savannah, GAGoogle Scholar
172Brandeis, D. et al. (2006) Brain mapping of attention and inhibition in ADHD sib pairs using CPT variants. In 17th European Network on Hyperkinetic Disorders (EUNETHYDIS) Meeting, Brugge, BelgiumGoogle Scholar
173Gilmore, C., Malone, S. and Iacono, W. (2010) Brain electrophysiological endophenotypes for externalizing psychopathology: a multivariate approach. Behavior Genetics 40, 186-200CrossRefGoogle ScholarPubMed
174Hicks, B.M. et al. (2007) Genes mediate the association between P3 amplitude and externalizing disorders. In, pp. 98-105. Blackwell Publishing IncGoogle ScholarPubMed
175Begleiter, H. et al. (1998) Quantitative trait loci analysis of human event-related brain potentials: P3 voltage. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 108, 244-250CrossRefGoogle ScholarPubMed
176Wright, M.J. et al. (2008) QTLs identified for P3 amplitude in a non-clinical sample: importance of neurodevelopmental and neurotransmitter genes. Biological Psychiatry 63, 864-873CrossRefGoogle Scholar
177Hill, S.Y. et al. (1998) Genetic association between reduced P300 amplitude and the DRD2 dopamine receptor A1 allele in children at high risk for alcoholism. Biological Psychiatry 43, 40-51CrossRefGoogle ScholarPubMed
178Noble, E.P. et al. (1994) Prolonged P300 latency in children with the D[sub 2] dopamine receptor A1 allele. American Journal of Human Genetics (United States) 54, 658-668Google Scholar
179Lin, C.-H. et al. (2001) Association analysis for dopamine D2 receptor Taq 1 polymorphism with P300 event-related potential for normal young females. Psychiatric Genetics 11, 165-168CrossRefGoogle Scholar
180Vogel, C.I.G. et al. (2006) Association of DRD4 exon III polymorphism with auditory P300 amplitude in 8-year-old children. Journal of Neural Transmission 113, 1935-1941CrossRefGoogle ScholarPubMed
181Tsai, S.-J. et al. (2003) Association study of a functional catechol-O-methyltransferase-gene polymorphism and cognitive function in healthy females. Neuroscience Letters 338, 123-126CrossRefGoogle ScholarPubMed
182Yue, C. et al. (2009) Comparison of visual evoked-related potentials in healthy young adults of different catechol-O-methyltransferase genotypes in a continuous 3-back task. NeuroReport 20, 521-52410.1097/WNR.0b013e328317f3b1CrossRefGoogle Scholar
183Kramer, U.M. et al. (2007) The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. Journal of Neuroscience 27, 14190-14198CrossRefGoogle ScholarPubMed
184Bramon, E. et al. (2006) Is there an association between the COMT gene and P300 endophenotypes? European Psychiatry 21, 70-73CrossRefGoogle ScholarPubMed
185Dresler, T. et al. (2010) Dopamine transporter (SLC6A3) genotype impacts neurophysiological correlates of cognitive response control in an adult sample of patients with ADHD. Neuropsychopharmacology 35, 2193-2202CrossRefGoogle Scholar
186Franke, B. et al. (2009) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 35, 656-664CrossRefGoogle ScholarPubMed
187Baehne, C.G. et al. (2008) Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals. Molecular Psychiatry 14, 1032-1039CrossRefGoogle ScholarPubMed
188Kramer, U. et al. (2009) ADHD candidate gene (DRD4 exon III) affects inhibitory control in a healthy sample. BMC Neuroscience 10, 150CrossRefGoogle Scholar
189Gehring, W.J. et al. (1993) A neural system for error detection and compensation. Psychological Science 4, 385-390CrossRefGoogle Scholar
190Carter, C.S. et al. (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747-749CrossRefGoogle ScholarPubMed
191Falkenstein, M. et al. (2000) ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology 51, 87-107CrossRefGoogle ScholarPubMed
192Nieuwenhuis, S. et al. (2001) Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38, 752-760CrossRefGoogle ScholarPubMed
193Olvet, D.M. and Hajcak, G. (2009) Reliability of error-related brain activity. Brain Research 1284, 89-99CrossRefGoogle ScholarPubMed
194van Meel, C.S. et al. (2007) Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psychiatry Research 151, 211-220CrossRefGoogle ScholarPubMed
195Liotti, M. et al. (2005) Abnormal brain activity related to performance monitoring and error detection in Children with ADHD. Cortex 41, 377-388CrossRefGoogle ScholarPubMed
196Jonkman, L.M. et al. (2007) Methylphenidate improves deficient error evaluation in children with ADHD: an event-related brain potential study. Biological Psychology 76, 217-229CrossRefGoogle ScholarPubMed
197Wiersema, J.R., van der Meere, J.J. and Roeyers, H. (2005) ERP correlates of impaired error monitoring in children with ADHD. Journal of Neural Transmission 112, 1417-1430CrossRefGoogle ScholarPubMed
198Shiels, K. and Hawk, L.W. Jr. (2010) Self-regulation in ADHD: the role of error processing. Clinical Psychology Review 30, 951-961CrossRefGoogle ScholarPubMed
199Anokhin, A.P., Golosheykin, S. and Heath, A.C. (2008) Heritability of frontal brain function related to action monitoring. Psychophysiology 45, 524-534CrossRefGoogle ScholarPubMed
200Albrecht, B. et al. (2010) Action monitoring in children with or without a family history of ADHD – effects of gender on an endophenotype parameter. Neuropsychologia 48, 1171-1177CrossRefGoogle ScholarPubMed
201Botvinick, M.M., Cohen, J.D. and Carter, C.S. (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences 8, 539-546CrossRefGoogle ScholarPubMed
202Gehring, W.J. and Knight, R.T. (2000) Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience 3, 516-520CrossRefGoogle ScholarPubMed
203Bush, G. et al. (1999) Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop. Biological Psychiatry 45, 1542-1552CrossRefGoogle ScholarPubMed
204Paloyelis, Y. et al. (2007) Functional MRI in ADHD: a systematic literature review. Expert Review of Neurotherapeutics 7, 1337-1356CrossRefGoogle ScholarPubMed
205Brown, A.B. et al. (2010) Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 153B, 365-375CrossRefGoogle ScholarPubMed
206Seamans, J.K. and Yang, C.R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74, 1-58CrossRefGoogle ScholarPubMed
207Holroyd, C.B. and Coles, M.G.H. (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review 109, 679-709CrossRefGoogle ScholarPubMed
208Frank, M.J. (2007) Cross-task individual differences in error processing: neural, electrophysiological, and genetic components. Cognitive, Affective, & Behavioural Neuroscience 7, 297-308CrossRefGoogle ScholarPubMed
209Ullsperger, M. (2010) Genetic association studies of performance monitoring and learning from feedback: the role of dopamine and serotonin. Neuroscience & Biobehavioral Reviews 34, 649-659CrossRefGoogle ScholarPubMed
210Althaus, M. et al. (2010) Variants of the SLC6A3 (DAT1) polymorphism affect performance monitoring-related cortical evoked potentials that are associated with ADHD. Biological Psychology 85, 19-32CrossRefGoogle ScholarPubMed
211Fallgatter, A.J. et al. (2004) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29, 1506-1511CrossRefGoogle ScholarPubMed
212Halperin, J.M. et al. (2008) Neuropsychological outcome in adolescents/young adults with childhood ADHD: profiles of persisters, remitters and controls. Journal of Child Psychology and Psychiatry 49, 958-966CrossRefGoogle ScholarPubMed
213Johnson, K.A., Wiersema, J.R. and Kuntsi, J. (2009) What would Karl Popper say? Are current psychological theories of ADHD falsifiable? Behavioral and Brain Functions 5, 15CrossRefGoogle Scholar
214Loo, S.K. and Barkley, R.A. (2005) Clinical utility of EEG in attention deficit hyperactivity disorder. Applied Neuropsychology 12, 64-76CrossRefGoogle ScholarPubMed
215Chabot, R.J. et al. (1996) Sensitivity and specificity of QEEG in children with attention deficit or specific developmental learning disorders. Clinical EEG electroencephalography 27, 26-34CrossRefGoogle ScholarPubMed
216Monastra, V.J., Lubar, J.F. and Linden, M. (2001) The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: reliability and validity studies. Neuropsychology 15, 136-144CrossRefGoogle ScholarPubMed
217Monastra, V.J. et al. (1999) Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: an initial validation study. Neuropsychology 13, 424-433CrossRefGoogle ScholarPubMed
218Dalsgaard, S. et al. (2002) Conduct problems, gender and adult psychiatric outcome of children with attention-deficit hyperactivity disorder. The British Journal of Psychiatry 181, 416-421CrossRefGoogle ScholarPubMed
219Rommelse, N. et al. (2009) Comorbid problems in ADHD: degree of association, shared endophenotypes, and formation of distinct subtypes. Implications for a future DSM. Journal of Abnormal Child Psychology 37, 793-804CrossRefGoogle ScholarPubMed
220Broyd, S.J. et al. (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience & Biobehavioral Reviews 33, 279-296CrossRefGoogle ScholarPubMed
221Geurts, H.M. et al. (2008) Intra-individual variability in ADHD, autism spectrum disorders and Tourette's syndrome. Neuropsychologia 46, 3030-3041CrossRefGoogle ScholarPubMed
222Sergeant, J.A., Geurts, H. and Oosterlaan, J. (2002) How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behavioural Brain Research 130, 3-28CrossRefGoogle ScholarPubMed
223Rothenberger, A. et al. (2000) Comorbidity in ADHD-children: effects of coexisting conduct disorder or tic disorder on event-related brain potentials in an auditory selective-attention task. European Archives of Psychiatry and Clinical Neuroscience 250, 101-110CrossRefGoogle ScholarPubMed
224Yordanova, J. et al. (1997) Frontocortical activity in children with comorbidity of tic disorder and attention-deficit hyperactivity disorder. Biological Psychiatry 41, 585-594CrossRefGoogle ScholarPubMed
225Liotti, M. et al. (2010) Evidence for specificity of ERP abnormalities during response inhibition in ADHD children: a comparison with reading disorder children without ADHD. Brain and Cognition 72, 228-237CrossRefGoogle ScholarPubMed
226Groen, Y. et al. (2008) Error and feedback processing in children with ADHD and children with autistic spectrum disorder: an EEG event-related potential study. Clinical Neurophysiology 119, 2476-2493CrossRefGoogle ScholarPubMed
227Clarke, A.R. et al. (2011) Children with attention-deficit/hyperactivity disorder and autistic features: EEG evidence for comorbid disorders. Psychiatry Research 185, 225-231CrossRefGoogle ScholarPubMed
228Gevensleben, H. et al. (2009) Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and Psychiatry 50, 780-789CrossRefGoogle ScholarPubMed
229Arns, M. et al. (2009) Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clinical EEG and Neuroscience 40, 180-189CrossRefGoogle ScholarPubMed
230Gani, C. et al. (2003) Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Applied Psychophysiology and Biofeedback 28, 1-12Google Scholar
231Jurgen, K. and Craig, E.T. (2003) Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 114, 2307-2325Google Scholar
232Makeig, S. et al. (1996) Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems 8, 145-151Google Scholar
233Flint, J. and Munafo, M. (2007) The endophenotype concept in psychiatric genetics. Psychological Medicine 37, 163-180CrossRefGoogle ScholarPubMed
234Kovas, Y. and Plomin, R. (2006) Generalist genes: implications for the cognitive sciences. Trends in Cognitive Sciences 10, 198-203CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

The website of the MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, King's College London, UK, provides an outline of the interdisciplinary research being undertaken there:

Rommelse, N.J. (2008) Endophenotypes in the genetic research of ADHD over the last decade: have they lived up to their expectations? Expert Review of Neurotherapeutics 8, 1425-1429CrossRefGoogle ScholarPubMed
De Geus, E.J.C. (2010) From genotype to EEG endophenotype: a route for post-genomic understanding of complex psychiatric disease? Genome Medicine, 2, 63CrossRefGoogle ScholarPubMed
Wood, A.C. and Neale, M.C. (2010) Twin studies and their implications for molecular genetic studies: endophenotypes integrate quantitative and molecular genetics in ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 49, 874-883CrossRefGoogle ScholarPubMed
Waldman, I.D. (2005) Statistical approaches to complex phenotypes: evaluating neuropsychological endophenotypes for attention-deficit/hyperactivity disorder. Biological Psychiatry 57, 1347-1356CrossRefGoogle ScholarPubMed
Rommelse, N.J. (2008) Endophenotypes in the genetic research of ADHD over the last decade: have they lived up to their expectations? Expert Review of Neurotherapeutics 8, 1425-1429CrossRefGoogle ScholarPubMed
De Geus, E.J.C. (2010) From genotype to EEG endophenotype: a route for post-genomic understanding of complex psychiatric disease? Genome Medicine, 2, 63CrossRefGoogle ScholarPubMed
Wood, A.C. and Neale, M.C. (2010) Twin studies and their implications for molecular genetic studies: endophenotypes integrate quantitative and molecular genetics in ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 49, 874-883CrossRefGoogle ScholarPubMed
Waldman, I.D. (2005) Statistical approaches to complex phenotypes: evaluating neuropsychological endophenotypes for attention-deficit/hyperactivity disorder. Biological Psychiatry 57, 1347-1356CrossRefGoogle ScholarPubMed