Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T05:41:18.813Z Has data issue: false hasContentIssue false

Mitochondria-targeted therapies for acute kidney injury

Published online by Cambridge University Press:  08 August 2014

Luis Carlos Tábara
Affiliation:
IIS-Fundacion Jimenez Diaz, Madrid, Spain REDINREN, Madrid, Spain
Jonay Poveda
Affiliation:
IIS-Fundacion Jimenez Diaz, Madrid, Spain REDINREN, Madrid, Spain
Catalina Martin-Cleary
Affiliation:
IIS-Fundacion Jimenez Diaz, Madrid, Spain REDINREN, Madrid, Spain
Rafael Selgas
Affiliation:
REDINREN, Madrid, Spain IDIPAZ, Madrid, Spain
Alberto Ortiz
Affiliation:
IIS-Fundacion Jimenez Diaz, Madrid, Spain REDINREN, Madrid, Spain Universidad Autonoma de Madrid, Madrid, Spain IRSIN, Paseo de la Castellana, 260, 28046 Madrid, Spain
Maria D. Sanchez-Niño*
Affiliation:
REDINREN, Madrid, Spain IDIPAZ, Madrid, Spain
*
*Corresponding author: Maria D. Sanchez-Niño, Paseo de la Castellana, 260, 28046 Madrid, Spain. E-mail: dolores.sanchez@idipaz.es

Abstract

Acute kidney injury (AKI) is a serious clinical condition with no effective treatment. Tubular cells are key targets in AKI. Tubular cells and, specifically, proximal tubular cells are extremely rich in mitochondria and mitochondrial changes had long been known to be a feature of AKI. However, only recent advances in understanding the molecules involved in mitochondria biogenesis and dynamics and the availability of mitochondria-targeted drugs has allowed the exploration of the specific role of mitochondria in AKI. We now review the morphological and functional mitochondrial changes during AKI, as well as changes in the expression of mitochondrial genes and proteins. Finally, we summarise the current status of novel therapeutic strategies specifically targeting mitochondria such as mitochondrial permeability transition pore (MPTP) opening inhibitors (cyclosporine A (CsA)), quinone analogues (MitoQ, SkQ1 and SkQR1), superoxide dismutase (SOD) mimetics (Mito-CP), Szeto-Schiller (SS) peptides (Bendavia) and mitochondrial division inhibitors (mdivi-1). MitoQ, SkQ1, SkQR1, Mito-CP, Bendavia and mdivi-1 have improved the course of diverse experimental models of AKI. Evidence for a beneficial effect of CsA on human cardiac ischaemia–reperfusion injury derives from a clinical trial; however, CsA is nephrotoxic. MitoQ and Bendavia have been shown to be safe for humans. Ongoing clinical trials are testing the efficacy of Bendavia in AKI prevention following renal artery percutaneous transluminal angioplasty.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Moe, S. et al. (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney disease: improving global outcomes (KDIGO). Kidney International 69, 1945-1953CrossRefGoogle ScholarPubMed
2Bellomo, R., Kellum, J.A. and Ronco, C. (2012) Acute kidney injury. Lancet 380, 756-766CrossRefGoogle ScholarPubMed
3Perazella, M.A. and Coca, S.G. (2013) Three feasible strategies to minimize kidney injury in ‘incipient AKI’. Nature Reviews Nephrology 9, 484-490CrossRefGoogle ScholarPubMed
4Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements 2, 1-138Google Scholar
5Sanz, A.B. et al. (2008) Mechanisms of renal apoptosis in health and disease. Journal of the American Society of Nephrology 19, 1634-1642CrossRefGoogle ScholarPubMed
6Martinou, J.C. and Youle, R.J. (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Developmental Cell 21, 92-101CrossRefGoogle ScholarPubMed
7Vaux, D.L. (2011) Apoptogenic factors released from mitochondria. Biochimica et Biophysica Acta 1813, 546-550CrossRefGoogle ScholarPubMed
8Wang, C. and Youle, R.J. (2009) The role of mitochondria in apoptosis*. Annual Review of Genetics 43, 95-118CrossRefGoogle ScholarPubMed
9Eaton, S., Bartlett, K. and Pourfarzam, M. (1996) Mammalian mitochondrial beta-oxidation. Biochemical Journal 320 (Pt 2), 345-357CrossRefGoogle ScholarPubMed
10Chicco, A.J. and Sparagna, G.C. (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. American Journal of Physiology Cell Physiology 292, C33-C44CrossRefGoogle ScholarPubMed
11Giorgio, V. et al. (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America 110, 5887-5892CrossRefGoogle ScholarPubMed
12Kokoszka, J.E. et al. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461-465CrossRefGoogle Scholar
13Baines, C.P. et al. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology 9, 550-555CrossRefGoogle ScholarPubMed
14Anderson, S. et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465CrossRefGoogle ScholarPubMed
15Pagliarini, D.J. et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123CrossRefGoogle ScholarPubMed
16Weinberg, J.M. (2011) Mitochondrial biogenesis in kidney disease. Journal of the American Society of Nephrology 22, 431-436CrossRefGoogle ScholarPubMed
17Wu, Z. et al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124CrossRefGoogle ScholarPubMed
18Rasbach, K.A. and Schnellmann, R.G. (2007) Signaling of mitochondrial biogenesis following oxidant injury. Journal of Biological Chemistry 282, 2355-2362CrossRefGoogle ScholarPubMed
19Jin, S.M. and Youle, R.J. (2012) PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science 125, 795-799CrossRefGoogle Scholar
20Liesa, M., Palacin, M. and Zorzano, A. (2009) Mitochondrial dynamics in mammalian health and disease. Physiology Review 89, 799-845CrossRefGoogle ScholarPubMed
21Bereiter-Hahn, J. and Voth, M. (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microscopy Research and Technique 27, 198-219CrossRefGoogle ScholarPubMed
22Kageyama, Y., Zhang, Z. and Sesaki, H. (2011) Mitochondrial division: molecular machinery and physiological functions. Current Opinion in Cell Biology 23, 427-434CrossRefGoogle ScholarPubMed
23Labrousse, A.M. et al. (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Molecular Cell 4, 815-826CrossRefGoogle ScholarPubMed
24Smirnova, E. et al. (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular Biology of the Cell 12, 2245-2256CrossRefGoogle ScholarPubMed
25Iglewski, M. et al. (2010) Mitochondrial fission and autophagy in the normal and diseased heart. Current Hypertension Reports 12, 418-425CrossRefGoogle ScholarPubMed
26Nunnari, J. and Suomalainen, A. (2012) Mitochondria: in sickness and in health. Cell 148, 1145-1159CrossRefGoogle ScholarPubMed
27Lanza, I.R. and Nair, K.S. (2010) Mitochondrial function as a determinant of life span. Pflugers Archiv: European Journal of Physiology 459, 277-289CrossRefGoogle ScholarPubMed
28Kowaltowski, A.J. and Vercesi, A.E. (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radical Biology and Medicine 26, 463-471CrossRefGoogle ScholarPubMed
29Thannickal, V.J. and Fanburg, B.L. (2000) Reactive oxygen species in cell signaling. American Journal of Physiology. Lung Cellular and Molecular Physiology 279, L1005-L1028CrossRefGoogle ScholarPubMed
30Pan, X. et al. (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nature Cell Biology 15, 1464-1472CrossRefGoogle ScholarPubMed
31Levi, S. and Rovida, E. (2009) The role of iron in mitochondrial function. Biochimica et Biophysica Acta 1790, 629-636CrossRefGoogle ScholarPubMed
32Tait, S.W. and Green, D.R. (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Review Molecular Cell Biology 11, 621-632CrossRefGoogle ScholarPubMed
33Chipuk, J.E. et al. (2010) The BCL-2 family reunion. Molecular Cell 37, 299-310CrossRefGoogle ScholarPubMed
34Linkermann, A. et al. (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America 110, 12024-12029CrossRefGoogle ScholarPubMed
35Kinnally, K.W. et al. (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochimica et Biophysica Acta 1813, 616-622CrossRefGoogle ScholarPubMed
36De, G.F. et al. (2002) The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB Journal 16, 607-609Google Scholar
37Cardenas, C. et al. (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270-283CrossRefGoogle ScholarPubMed
38Eng, C.H. et al. (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Science Signaling 3, ra31CrossRefGoogle ScholarPubMed
39Egan, D.F. et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461CrossRefGoogle ScholarPubMed
40Inoki, K., Zhu, T. and Guan, K.L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590CrossRefGoogle ScholarPubMed
41Kim, J. et al. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 13, 132-141CrossRefGoogle ScholarPubMed
42West, A.P., Shadel, G.S. and Ghosh, S. (2011) Mitochondria in innate immune responses. Nature Reviews Immunology 11, 389-402CrossRefGoogle ScholarPubMed
43Bulua, A.C. et al. (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). Journal of Experimental Medicine 208, 519-533CrossRefGoogle ScholarPubMed
44Vance, J.E. and Shiao, Y.J. (1996) Intracellular trafficking of phospholipids: import of phosphatidylserine into mitochondria. Anticancer Research 16, 1333-1339Google ScholarPubMed
45Lebiedzinska, M. et al. (2009) Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. International Journal of Biochemistry and Cell Biology 41, 1805-1816CrossRefGoogle ScholarPubMed
46Sanchez-Nino, M.D. et al. (2012) Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. American Journal of Physiology. Renal Physiology 302, F647-F657CrossRefGoogle ScholarPubMed
47Rojas-Rivera, J. et al. (2010) The expanding spectrum of biological actions of vitamin D. Nephrology Dialysis Transplantation 25, 2850-2865CrossRefGoogle ScholarPubMed
48Brooks, C. et al. (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. Journal of Clinical Investigation 119, 1275-1285CrossRefGoogle ScholarPubMed
49Szeto, H.H. et al. (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. Journal of the American Society of Nephrology 22, 1041-1052CrossRefGoogle ScholarPubMed
50Birk, A.V. et al. (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. Journal of the American Society of Nephrology 24, 1250-1261CrossRefGoogle ScholarPubMed
51Eirin, A. et al. (2012) A mitochondrial permeability transition pore inhibitor improves renal outcomes after revascularization in experimental atherosclerotic renal artery stenosis. Hypertension 60, 1242-1249CrossRefGoogle ScholarPubMed
52Parajuli, N. et al. (2012) MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys. PLoS ONE 7, e48590CrossRefGoogle ScholarPubMed
53Mukhopadhyay, P. et al. (2012) Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radical Biology and Medicine 52, 497-506CrossRefGoogle ScholarPubMed
54Jankauskas, S.S. et al. (2012) Mitochondria-targeted antioxidant SkQR1 ameliorates gentamycin-induced renal failure and hearing loss. Biochemistry (Mosc.) 77, 666-670CrossRefGoogle ScholarPubMed
55Funk, J.A. and Schnellmann, R.G. (2012) Persistent disruption of mitochondrial homeostasis after acute kidney injury. American Journal of Physiology. Renal Physiology 302, F853-F864CrossRefGoogle ScholarPubMed
56Tang, W.X. et al. (2013) Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. Journal of Nephrology 26, 1073-1082CrossRefGoogle ScholarPubMed
57Plotnikov, E.Y. et al. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochimica et Biophysica Acta 1812, 77-86CrossRefGoogle ScholarPubMed
58Jiang, Z. et al. (2013) Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity. Toxicology and Applied Pharmacology 266, 198-203CrossRefGoogle ScholarPubMed
59Herlitz, L.C. et al. (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney International 78, 1171-1177CrossRefGoogle ScholarPubMed
60Tanji, N. et al. (2001) Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Human Pathology 32, 734-740CrossRefGoogle ScholarPubMed
61Kohler, J.J. et al. (2009) Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Laboratory Investigation 89, 513-519CrossRefGoogle ScholarPubMed
62Tran, M. et al. (2011) PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. Journal of Clinical Investigation 121, 4003-4014CrossRefGoogle ScholarPubMed
63Hall, A.M. et al. (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney International 83, 72-83Google Scholar
64Porta, F. et al. (2006) Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Critical Care 10, R118CrossRefGoogle ScholarPubMed
65Abraham, P., Ramamoorthy, H. and Isaac, B. (2013) Depletion of the cellular antioxidant system contributes to tenofovir disoproxil fumarate – induced mitochondrial damage and increased oxido-nitrosative stress in the kidney. Journal of Biomedical Science 20, 61CrossRefGoogle ScholarPubMed
66Plotnikov, E.Y. et al. (2009) Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochimica et Biophysica Acta 1792, 796-803CrossRefGoogle ScholarPubMed
67Liu, X. and Hajnoczky, G. (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death and Differentiation 18, 1561-1572CrossRefGoogle ScholarPubMed
68Zsengeller, Z.K. et al. (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. Journal of Histochemistry and Cytochemistry 60, 521-529CrossRefGoogle ScholarPubMed
69Fernandez-Fernandez, B. et al. (2011) Tenofovir nephrotoxicity: 2011 update. AIDS Research and Treatment 2011, 354908CrossRefGoogle ScholarPubMed
70Plotnikov, E.Y. et al. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney International 72, 1493-1502CrossRefGoogle ScholarPubMed
71Burke, T.J. et al. (1983) Role of mitochondria in ischemic acute renal failure. Clinical and Experimental Dialysis and Apheresis 7, 49-61CrossRefGoogle ScholarPubMed
72Sun, Z. et al. (2008) Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide. American Journal of Physiology. Renal Physiology 294, F491-F498CrossRefGoogle ScholarPubMed
73Weinberg, J.M. et al. (2000) Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proceedings of the National Academy of Sciences of the United States of America 97, 2826-2831CrossRefGoogle ScholarPubMed
74Devarajan, P. (2006) Update on mechanisms of ischemic acute kidney injury. Journal of the American Society of Nephrology 17, 1503-1520CrossRefGoogle ScholarPubMed
75Pfaller, W., Gstraunthaler, G. and Willinger, C.C. (1990) Morphology of renal tubular damage from nephrotoxins. Toxicology Letters 53, 39-43CrossRefGoogle ScholarPubMed
76Izzedine, H. et al. (2003) Drug-induced Fanconi's syndrome. American Journal of Kidney Disease 41, 292-309CrossRefGoogle ScholarPubMed
77Feldkamp, T., Kribben, A. and Weinberg, J.M. (2005) Assessment of mitochondrial membrane potential in proximal tubules after hypoxia-reoxygenation. American Journal of Physiology. Renal Physiology 288, F1092-F1102CrossRefGoogle ScholarPubMed
78Hall, A.M. and Unwin, R.J. (2007) The not so ‘mighty chondrion’: emergence of renal diseases due to mitochondrial dysfunction. Nephron Physiology 105, 1-10CrossRefGoogle ScholarPubMed
79Jassem, W. et al. (2002) The role of mitochondria in ischemia/reperfusion injury. Transplantation 73, 493-499CrossRefGoogle ScholarPubMed
80Jassem, W. and Heaton, N.D. (2004) The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney International 66, 514-517CrossRefGoogle ScholarPubMed
81Nath, K.A. et al. (1998) Intracellular targets in heme protein-induced renal injury. Kidney International 53, 100-111CrossRefGoogle ScholarPubMed
82Beiral, H.J. et al. (2012) The impact of stem cells on electron fluxes, proton translocation and ATP synthesis in kidney mitochondria after Ischemia/Reperfusion. Cell Transplantation 23, 207-220CrossRefGoogle ScholarPubMed
83Shah, S.V. and Walker, P.D. (1988) Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. American Journal of Physiology 255, F438-F443Google ScholarPubMed
84Zager, R.A. (1996) Mitochondrial free radical production induces lipid peroxidation during myohemoglobinuria. Kidney International 49, 741-751CrossRefGoogle ScholarPubMed
85Crompton, M. (1999) The mitochondrial permeability transition pore and its role in cell death. Biochemical Journal 341 (Pt 2), 233-249CrossRefGoogle ScholarPubMed
86Bonventre, J.V. (1993) Mechanisms of ischemic acute renal failure. Kidney International 43, 1160-1178CrossRefGoogle ScholarPubMed
87Bonventre, J.V. and Weinberg, J.M. (2003) Recent advances in the pathophysiology of ischemic acute renal failure. Journal of the American Society of Nephrology 14, 2199-2210CrossRefGoogle ScholarPubMed
88Bosch, X., Poch, E. and Grau, J.M. (2009) Rhabdomyolysis and acute kidney injury. The New England Journal of Medicine 361, 62-72CrossRefGoogle ScholarPubMed
89Wang, W. et al. (2008) Superoxide flashes in single mitochondria. Cell 134, 279-290CrossRefGoogle ScholarPubMed
90Korge, P., Ping, P. and Weiss, J.N. (2008) Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circulation Research 103, 873-880CrossRefGoogle ScholarPubMed
91Weinberg, J.M. et al. (1997) Glycine-protected, hypoxic, proximal tubules develop severely compromised energetic function. Kidney International 52, 140-151CrossRefGoogle ScholarPubMed
92Heyman, S.N. et al. (2012) Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrology Dialysis Transplantation 27, 1721-1728CrossRefGoogle ScholarPubMed
93Brooks, C. et al. (2011) Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. American Journal of Physiology. Cell Physiology 300, C447-C455CrossRefGoogle ScholarPubMed
94Gall, J.M. et al. (2012) Role of mitofusin 2 in the renal stress response. PLoS ONE 7, e31074CrossRefGoogle ScholarPubMed
95Justo, P. et al. (2003) Expression of Smac/Diablo in tubular epithelial cells and during acute renal failure. Kidney International Supplement S52-S56CrossRefGoogle ScholarPubMed
96Lorz, C. et al. (2005) Role of Bcl-xL in paracetamol-induced tubular epithelial cell death. Kidney International 67, 592-601CrossRefGoogle ScholarPubMed
97Mortensen, J. et al. (2011) MnTMPyP, a superoxide dismutase/catalase mimetic, decreases inflammatory indices in ischemic acute kidney injury. Inflammation Research 60, 299-307CrossRefGoogle ScholarPubMed
98Devalaraja-Narashimha, K., Diener, A.M. and Padanilam, B.J. (2009) Cyclophilin D gene ablation protects mice from ischemic renal injury. American Journal of Physiology. Renal Physiology 297, F749-F759CrossRefGoogle ScholarPubMed
99Gottlieb, R.A. (2011) Cell death pathways in acute ischemia/reperfusion injury. Journal of Cardiovascular Pharmacology Therapy 16, 233-238CrossRefGoogle ScholarPubMed
100Shi, J. et al. (2013) PGC1alpha plays a critical role in TWEAK-induced cardiac dysfunction. PLoS ONE 8, e54054CrossRefGoogle Scholar
101Zhang, H. et al. (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407-420CrossRefGoogle ScholarPubMed
102Wegrzyn, J. et al. (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323, 793-797CrossRefGoogle ScholarPubMed
103Sanz, A.B., Sanchez-Nino, M.D. and Ortiz, A. (2011) TWEAK, a multifunctional cytokine in kidney injury. Kidney International 80, 708-718CrossRefGoogle ScholarPubMed
104Sanz, A.B. et al. (2010) TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21. PLoS ONE 5, e8955CrossRefGoogle ScholarPubMed
105Ucero, A.C. et al. (2013) TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast, Biochimica et Biophysica Acta 1832, 1744-1755CrossRefGoogle ScholarPubMed
106Papandreou, I. et al. (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism 3, 187-197CrossRefGoogle ScholarPubMed
107Fernandez-Sanchez, R. et al. (2012) AG490 promotes HIF-1alpha accumulation by inhibiting its hydroxylation. Current Medical Chemistry 19, 4014-4023CrossRefGoogle ScholarPubMed
108Goncalves, S. et al. (2010) Tyrphostins as potential therapeutic agents for acute kidney injury. Current Medical Chemistry 17, 974-986CrossRefGoogle ScholarPubMed
109Neria, F. et al. (2009) Inhibition of JAK2 protects renal endothelial and epithelial cells from oxidative stress and cyclosporin A toxicity. Kidney International 75, 227-234CrossRefGoogle ScholarPubMed
110Ortiz, A. et al. (2003) Targeting apoptosis in acute tubular injury. Biochemical Pharmacology 66, 1589-1594CrossRefGoogle ScholarPubMed
111Wei, Q. et al. (2013) Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney International 84, 138-148CrossRefGoogle ScholarPubMed
112Sheridan, C. et al. (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Molecular Cell 31, 570-585CrossRefGoogle ScholarPubMed
113Wen, X. et al. (2012) One dose of cyclosporine A is protective at initiation of folic acid-induced acute kidney injury in mice. Nephrology Dialysis Transplantation 27, 3100-3109CrossRefGoogle ScholarPubMed
114Bakeeva, L.E. et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc.) 73, 1288-1299CrossRefGoogle ScholarPubMed
115Piot, C. et al. (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. The New England Journal of Medicine 359, 473-481CrossRefGoogle ScholarPubMed
116Mott, J.L. et al. (2004) Cardiac disease due to random mitochondrial DNA mutations is prevented by cyclosporin A. Biochemical and Biophysical Research Communications 319, 1210-1215CrossRefGoogle ScholarPubMed
117Elrod, J.W. et al. (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. Journal of Clinical Investigation 120, 3680-3687CrossRefGoogle ScholarPubMed
118Cho, S.G. et al. (2010) Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. American Journal of Physiology. Renal Physiology 299, F199-F206CrossRefGoogle ScholarPubMed
119Cereghetti, G.M. et al. (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the National Academy of Sciences of the United States of America 105, 15803-15808CrossRefGoogle ScholarPubMed
120Gonzalez-Guerrero, C. et al. (2013) Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-kappaB-mediated inflammatory responses in kidney tubular cells. Toxicology and Applied Pharmacology 272, 825-841CrossRefGoogle ScholarPubMed
121Berzal, S. et al. (2012) GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells. Toxicology Science 127, 425-437CrossRefGoogle ScholarPubMed
122de, A.G. et al. (2013) Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicology Letters 218, 30-38Google Scholar
123Puigmule, M. et al. (2009) Differential proteomic analysis of cyclosporine A-induced toxicity in renal proximal tubule cells. Nephrology Dialysis Transplantation 24, 2672-2686CrossRefGoogle ScholarPubMed
124Baines, C.P. et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662CrossRefGoogle ScholarPubMed
125Nakagawa, T. et al. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652-658CrossRefGoogle Scholar
126Quarato, G. et al. (2012) The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction. Hepatology 55, 1333-1343CrossRefGoogle ScholarPubMed
127Ong, S.B. and Hausenloy, D.J. (2010) Mitochondrial morphology and cardiovascular disease. Cardiovascular Research 88, 16-29CrossRefGoogle ScholarPubMed
128Arnoult, D. et al. (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. Journal of Biological Chemistry 280, 35742-35750CrossRefGoogle ScholarPubMed
129Frezza, C. et al. (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189CrossRefGoogle ScholarPubMed
130Zhan, M. et al. (2013) Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney International 83, 568-581CrossRefGoogle ScholarPubMed
131Cassidy-Stone, A. et al. (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Developmental Cell 14, 193-204CrossRefGoogle ScholarPubMed
132Ong, S.B. et al. (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121, 2012-2022CrossRefGoogle ScholarPubMed
133Hall, A.M. (2013) Maintaining mitochondrial morphology in AKI: looks matter. Journal of the American Society of Nephrology 24, 1185-1187CrossRefGoogle ScholarPubMed
134Tepel, M. et al. (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. The New England Journal of Medicine 343, 180-184CrossRefGoogle ScholarPubMed
135Marenzi, G. et al. (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. The New England Journal of Medicine 354, 2773-2782CrossRefGoogle ScholarPubMed
136Fishbane, S. (2008) N-acetylcysteine in the prevention of contrast-induced nephropathy. Clinical Journal of the American Society of Nephrology 3, 281-287CrossRefGoogle ScholarPubMed
137Brueck, M. et al. (2013) Usefulness of N-acetylcysteine or ascorbic acid versus placebo to prevent contrast-induced acute kidney injury in patients undergoing elective cardiac catheterization: a single-center, prospective, randomized, double-blind, placebo-controlled trial. Journal of Invasive Cardiology 25, 276-283Google ScholarPubMed
138Tasanarong, A. et al. (2013) New strategy of alpha- and gamma-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. Nephrology Dialysis Transplantation 28, 337-344CrossRefGoogle ScholarPubMed
139Chakrabarti, A.K. et al. (2013) Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. American Heart Journal 165, 509-514CrossRefGoogle ScholarPubMed
140Kloner, R.A. et al. (2012) Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. Journal of American Heart Association 1, e001644CrossRefGoogle ScholarPubMed
141Kelso, G.F. et al. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. Journal of Biological Chemistry 276, 4588-4596CrossRefGoogle ScholarPubMed
142Smith, R.A. and Murphy, M.P. (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Annals of the New York Academy of Sciences 1201, 96-103CrossRefGoogle ScholarPubMed
143Mitchell, T. et al. (2011) The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. Journal of Pharmacology Experimental Therapy 336, 682-692CrossRefGoogle ScholarPubMed
144Antonenko, Y.N. et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.) 73, 1273-1287CrossRefGoogle ScholarPubMed
145Skulachev, M.V. et al. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Current Drug Targets. 12, 800-826CrossRefGoogle ScholarPubMed
146Stefanova, N.A. et al. (2013) Alzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. Journal of Alzheimers Disease 38, 681-694CrossRefGoogle Scholar
147Plotnikov, E.Y. et al. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Mosc.) 77, 1029-1037CrossRefGoogle ScholarPubMed
148Dilip, A. et al. (2013) Mitochondria-targeted antioxidant and glycolysis inhibition: synergistic therapy in hepatocellular carcinoma. Anticancer Drugs 24, 881-888CrossRefGoogle ScholarPubMed
149Sharma, K. et al. (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. Journal of the American Society of Nephrology 24, 1901-1912CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

http://www.mitoresearch.org/

The Mitochondria Research Society (MRS) is a nonprofit international organisation of scientists and physicians. The purpose of MRS is to find a cure for mitochondrial diseases by promoting research on basic science of mitochondria, mitochondrial pathogenesis, prevention, diagnosis and treatment throughout the world. Webpage provides access to general information, other mitochondrial societies and databases.

http://www.broadinstitute.org/pubs/MitoCarta/

MitoCarta is an inventory of 1098 mouse and 1013 human genes encoding proteins with strong support of mitochondrial localisation. Web page allows viewing and downloading datasets.

http://mitominer.mrc-mbu.cam.ac.uk/release-3.1/begin.do

Web page provides an integrated web resource of mitochondrial proteomics for a wide range of organisms

http://guidance.nice.org.uk/CG169

This clinical guideline offers evidence-based advice on the prevention, detection and management of acute kidney injury up to the point of renal replacement therapy. Represents current state-of-the-art management of the disease

http://kdigo.org/home/guidelines/acute-kidney-injury/

This clinical guideline offers evidence-based advice on the prevention, detection and management of acute kidney injury up to the point of renal replacement therapy. Represents current state-of-the-art management of the disease