Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T09:23:24.851Z Has data issue: false hasContentIssue false

Molecular targets for disrupting leukocyte trafficking during multiple sclerosis

Published online by Cambridge University Press:  19 July 2007

Erin E. McCandless
Affiliation:
Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
Robyn S. Klein*
Affiliation:
Departments of Pathology and Immunology, Internal Medicine, and Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA.
*
*Corresponding author: Robyn S. Klein, Washington University School of Medicine, Departments of Internal Medicine, Infectious Diseases, Pathology and Immunology, and Anatomy and Neurobiology, Campus Box 8051, 660 S. Euclid Ave, St Louis, MO 63110, USA. Tel: +1 314 286 2140; Fax: +1 314 362 2190; E-mail: rklein@id.wustl.edu

Abstract

Autoimmune diseases of the central nervous system (CNS) involve the migration of abnormal numbers of self-directed leukocytes across the blood–brain barrier that normally separates the CNS from the immune system. The cardinal lesion associated with neuroinflammatory diseases is the perivascular infiltrate, which comprises leukocytes that have traversed the endothelium and have congregated in a subendothelial space between the endothelial-cell basement membrane and the glial limitans. The exit of mononuclear cells from this space can be beneficial, as when virus-specific lymphocytes enter the CNS for pathogen clearance, or might induce CNS damage, such as in the autoimmune disease multiple sclerosis when myelin-specific lymphocytes invade and induce demyelinating lesions. The molecular mechanisms involved in the movement of lymphocytes through these compartments involve multiple signalling pathways between these cells and the microvasculature. In this review, we discuss adhesion, costimulatory, cytokine, chemokine and signalling molecules involved in the dialogue between lymphocytes and endothelial cells that leads to inflammatory infiltrates within the CNS, and the targeting of these molecules as therapies for the treatment of multiple sclerosis.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Butcher, E.C. and Picker, L.J. (1996) Lymphocyte homing and homeostasis. Science 272, 60-66CrossRefGoogle ScholarPubMed
2Springer, T.A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301-314CrossRefGoogle ScholarPubMed
3Johnston, B. and Butcher, E.C. (2002) Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 14, 83-92CrossRefGoogle ScholarPubMed
4Zollner, T.M., Asadullah, K. and Schon, M.P. (2007) Targeting leukocyte trafficking to inflamed skin - still an attractive therapeutic approach? Exp Dermatol 16, 1-12CrossRefGoogle ScholarPubMed
5Lucas, S.M., Rothwell, N.J. and Gibson, R.M. (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147 Suppl 1, S232-240CrossRefGoogle Scholar
6Ballabh, P., Braun, A. and Nedergaard, M. (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16, 1-13CrossRefGoogle ScholarPubMed
7Frohman, E.M., Racke, M.K. and Raine, C.S. (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354, 942-955CrossRefGoogle ScholarPubMed
8Sospedra, M. and Martin, R. (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23, 683-747CrossRefGoogle ScholarPubMed
9Prat, A. and Antel, J. (2005) Pathogenesis of multiple sclerosis. Curr Opin Neurol 18, 225-230CrossRefGoogle ScholarPubMed
10Siva, A. (2006) The spectrum of multiple sclerosis and treatment decisions. Clin Neurol Neurosurg 108, 333-338CrossRefGoogle ScholarPubMed
11Huseby, E.S. et al. (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194, 669-676CrossRefGoogle Scholar
12Weaver, C.T. et al. (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677-688CrossRefGoogle ScholarPubMed
13Harrington, L.E. et al. (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6, 1123-1132CrossRefGoogle Scholar
14Akbar, A.N. et al. (2007) The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7, 231-237CrossRefGoogle ScholarPubMed
15Chen, Y. et al. (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237-1240CrossRefGoogle ScholarPubMed
16Cua, D.J. et al. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744-748CrossRefGoogle ScholarPubMed
17Langrish, C.L. et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201, 233-240CrossRefGoogle ScholarPubMed
18Bruck, W. et al. (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38, 788-796CrossRefGoogle ScholarPubMed
19Huitinga, I. et al. (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172, 1025-1033CrossRefGoogle ScholarPubMed
20Powell, N.D. et al. (2005) Cutting edge: macrophage migration inhibitory factor is necessary for progression of experimental autoimmune encephalomyelitis. J Immunol 175, 5611-5614CrossRefGoogle ScholarPubMed
21Denkinger, C.M. et al. (2003) In vivo blockade of macrophage migration inhibitory factor ameliorates acute experimental autoimmune encephalomyelitis by impairing the homing of encephalitogenic T cells to the central nervous system. J Immunol 170, 1274-1282CrossRefGoogle ScholarPubMed
22Juedes, A.E. and Ruddle, N.H. (2001) Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 166, 5168-5175CrossRefGoogle ScholarPubMed
23Laschinger, M. and Engelhardt, B. (2000) Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 102, 32-43CrossRefGoogle Scholar
24Piccio, L. et al. (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168, 1940-1949CrossRefGoogle Scholar
25Piccio, L. et al. (2005) Efficient recruitment of lymphocytes in inflamed brain venules requires expression of cutaneous lymphocyte antigen and fucosyltransferase-VII. J Immunol 174, 5805-5813CrossRefGoogle ScholarPubMed
26Engelhardt, B. et al. (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90, 4459-4472CrossRefGoogle Scholar
27Ubogu, E.E., Cossoy, M.B. and Ransohoff, R.M. (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27, 48-55CrossRefGoogle ScholarPubMed
28Engelhardt, B. (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 113, 477-485CrossRefGoogle Scholar
29Biernacki, K. et al. (2001) Regulation of Th1 and Th2 lymphocyte migration by human adult brain endothelial cells. J Neuropathol Exp Neurol 60, 1127-1136CrossRefGoogle ScholarPubMed
30Bullard, D.C. et al. (2007) Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol 178, 851-857CrossRefGoogle ScholarPubMed
31Floris, S. et al. (2002) Interferon-beta directly influences monocyte infiltration into the central nervous system. J Neuroimmunol 127, 69-79CrossRefGoogle ScholarPubMed
32Mahad, D. et al. (2006) Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. Brain 129, 212-223CrossRefGoogle ScholarPubMed
33Prat, A. et al. (2002) Migration of multiple sclerosis lymphocytes through brain endothelium. Arch Neurol 59, 391-397CrossRefGoogle ScholarPubMed
34Quandt, J. and Dorovini-Zis, K. (2004) The beta chemokines CCL4 and CCL5 enhance adhesion of specific CD4+ T cell subsets to human brain endothelial cells. J Neuropathol Exp Neurol 63, 350-362CrossRefGoogle ScholarPubMed
35McCandless, E.E. et al. (2006) CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 177, 8053-8064CrossRefGoogle Scholar
36Brocke, S. et al. (1999) Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc Natl Acad Sci U S A 96, 6896-6901CrossRefGoogle Scholar
37Kent, S.J. et al. (1995) A monoclonal antibody to alpha 4-integrin reverses the MR-detectable signs of experimental allergic encephalomyelitis in the guinea pig. J Magn Reson Imaging 5, 535-540CrossRefGoogle ScholarPubMed
38Miller, D.H. et al. (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348, 15-23CrossRefGoogle ScholarPubMed
39Tubridy, N. et al. (1999) The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology 53, 466-472CrossRefGoogle ScholarPubMed
40Yednock, T.A. et al. (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356, 63-66CrossRefGoogle ScholarPubMed
41Adelman, B., Sandrock, A. and Panzara, M.A. (2005) Natalizumab and progressive multifocal leukoencephalopathy. N Engl J Med 353, 432-433CrossRefGoogle ScholarPubMed
42Giunti, D. et al. (2003) Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 73, 584-590CrossRefGoogle ScholarPubMed
43Misu, T. et al. (2001) Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J Neuroimmunol 114, 207-212CrossRefGoogle Scholar
44Sorensen, T.L. and Sellebjerg, F. (2001) Distinct chemokine receptor and cytokine expression profile in secondary progressive MS. Neurology 57, 1371-1376CrossRefGoogle ScholarPubMed
45Sorensen, T.L. et al. (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103, 807-815CrossRefGoogle ScholarPubMed
46Tran, E.H., Kuziel, W.A. and Owens, T. (2000) Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor. Eur J Immunol 30, 1410-14153.0.CO;2-L>CrossRefGoogle ScholarPubMed
47Liu, L. et al. (2006) Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/- mice with experimental autoimmune encephalomyelitis. J Immunol 176, 4399-4409CrossRefGoogle ScholarPubMed
48Pulkkinen, K. et al. (2004) Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis. Acta Neurol Scand 109, 342-347CrossRefGoogle ScholarPubMed
49Bennetts, B.H. et al. (1997) The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum Immunol 58, 52-59CrossRefGoogle ScholarPubMed
50Favorova, O.O. et al. (2006) Three allele combinations associated with multiple sclerosis. BMC Med Genet 7, 63CrossRefGoogle ScholarPubMed
51Gade-Andavolu, R. et al. (2004) Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med 6, 126-131CrossRefGoogle ScholarPubMed
52Kantarci, O.H. et al. (2005) CCR5Delta32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. J Neuroimmunol 169, 137-143CrossRefGoogle ScholarPubMed
53Huang, D.R. et al. (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193, 713-726CrossRefGoogle ScholarPubMed
54Izikson, L. et al. (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192, 1075-1080CrossRefGoogle Scholar
55Rottman, J.B. et al. (2000) Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J Immunol 30, 2372-23773.0.CO;2-D>CrossRefGoogle ScholarPubMed
56Fife, B.T. et al. (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192, 899-905CrossRefGoogle ScholarPubMed
57Zipp, F. et al. (2006) Blockade of chemokine signaling in patients with multiple sclerosis. Neurology 67, 1880-1883CrossRefGoogle ScholarPubMed
58Brodmerkel, C.M. et al. (2005) Discovery and pharmacological characterization of a novel rodent-active CCR2 antagonist, INCB3344. J Immunol 175, 5370-5378CrossRefGoogle ScholarPubMed
59Kappos, L. et al. (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355, 1124-1140CrossRefGoogle ScholarPubMed
60Rosen, H. and Goetzl, E.J. (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5, 560-570CrossRefGoogle ScholarPubMed
61Youssef, S. et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78-84CrossRefGoogle ScholarPubMed
62Nath, N. et al. (2004) Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J Immunol 172, 1273-1286CrossRefGoogle Scholar
63Greenwood, J. et al. (2003) Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. Faseb J 17, 905-907CrossRefGoogle ScholarPubMed
64Mach, F. (2002) Toward a role for statins in immunomodulation. Mol Interv 2, 478-480CrossRefGoogle Scholar
65Neuhaus, O. et al. (2005) Putative mechanisms of action of statins in multiple sclerosis–comparison to interferon-beta and glatiramer acetate. J Neurol Sci 233, 173-177CrossRefGoogle ScholarPubMed
66Weber, M.S. et al. (2006) Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol 178, 140-148CrossRefGoogle ScholarPubMed
67Bernot, D. et al. (2003) Effect of atorvastatin on adhesive phenotype of human endothelial cells activated by tumor necrosis factor alpha. J Cardiovasc Pharmacol 41, 316-324CrossRefGoogle ScholarPubMed
68Takeuchi, S. et al. (2000) Cerivastatin suppresses lipopolysaccharide-induced ICAM-1 expression through inhibition of Rho GTPase in BAEC. Biochem Biophys Res Commun 269, 97-102CrossRefGoogle ScholarPubMed
69Greenwood, J., Steinman, L. and Zamvil, S.S. (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6, 358-370CrossRefGoogle ScholarPubMed
70Etienne, S. et al. (1998) ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J Immunol 161, 5755-5761CrossRefGoogle ScholarPubMed
71Neuhaus, O. et al. (2005) Evaluation of HMG-CoA reductase inhibitors for multiple sclerosis: opportunities and obstacles. CNS Drugs 19, 833-841CrossRefGoogle ScholarPubMed
72Kappos, L. et al. (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6, 1176-1182CrossRefGoogle Scholar
73Vandenbark, A.A. (2005) TCR peptide vaccination in multiple sclerosis: boosting a deficient natural regulatory network that may involve TCR-specific CD4 + CD25+ Treg cells. Curr Drug Targets Inflamm Allergy 4, 217-229CrossRefGoogle ScholarPubMed
74Howard, L.M. et al. (1999) Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest 103, 281-290CrossRefGoogle Scholar
75Howard, L.M. et al. (2002) Normal Th1 development following long-term therapeutic blockade of CD154-CD40 in experimental autoimmune encephalomyelitis. J Clin Invest 109, 233-241CrossRefGoogle ScholarPubMed
76Howard, L.M. and Miller, S.D. (2001) Autoimmune intervention by CD154 blockade prevents T cell retention and effector function in the target organ. J Immunol 166, 1547-1553CrossRefGoogle ScholarPubMed
77Kalunian, K.C. et al. (2002) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46, 3251-3258CrossRefGoogle ScholarPubMed
78Dumont, F.J. (2002) IDEC-131. IDEC/Eisai. Curr Opin Investig Drugs 3, 725-734Google ScholarPubMed
79Tischner, D. et al. (2006) Polyclonal expansion of regulatory T cells interferes with effector cell migration in a model of multiple sclerosis. Brain 129, 2635-2647CrossRefGoogle Scholar
80Humphreys, I.R. et al. (2003) A critical role for OX40 in T cell-mediated immunopathology during lung viral infection. J Exp Med 198, 1237-1242CrossRefGoogle Scholar
81Carboni, S. et al. (2003) CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J Neuroimmunol 145, 1-11CrossRefGoogle Scholar
82Sharief, M.K. (2002) Heightened intrathecal release of soluble CD137 in patients with multiple sclerosis. Eur J Neurol 9, 49-54CrossRefGoogle ScholarPubMed
83Sun, Y. et al. (2002) Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol 168, 1457-1465CrossRefGoogle Scholar
84Malfitano, A.M. et al. (2006) Arvanil inhibits T lymphocyte activation and ameliorates autoimmune encephalomyelitis. J Neuroimmunol 171, 110-119CrossRefGoogle ScholarPubMed
85Croxford, J.L. and Miller, S.D. (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R + WIN55,212. J Clin Invest 111, 1231-1240CrossRefGoogle ScholarPubMed
86Ni, X. et al. (2004) Win 55212-2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult Scler 10, 158-164CrossRefGoogle Scholar
87Witting, A. et al. (2006) Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci U S A 103, 6362-6367CrossRefGoogle ScholarPubMed
88Cree, B.A. et al. (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64, 1270-1272CrossRefGoogle ScholarPubMed
89Cross, A.H. et al. (2006) Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 180, 63-70CrossRefGoogle Scholar
90Broom, K.A. et al. (2005) MRI reveals that early changes in cerebral blood volume precede blood-brain barrier breakdown and overt pathology in MS-like lesions in rat brain. J Cereb Blood Flow Metab 25, 204-216CrossRefGoogle ScholarPubMed
91Dousset, V. et al. (2006) MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol 27, 1000-1005Google ScholarPubMed
92Larsson, H.B. et al. (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16, 117-131CrossRefGoogle ScholarPubMed
93Wuerfel, J. et al. (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127, 111-119CrossRefGoogle ScholarPubMed
94Gimenez, M.A., Sim, J.E. and Russell, J.H. (2004) TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J Neuroimmunol 151, 116-125CrossRefGoogle ScholarPubMed
95Probert, L. et al. (2000) TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 123, 2005-2019CrossRefGoogle ScholarPubMed
96Kassiotis, G. et al. (1999) TNF accelerates the onset but does not alter the incidence and severity of myelin basic protein-induced experimental autoimmune encephalomyelitis. Eur J Immunol 29, 774-7803.0.CO;2-T>CrossRefGoogle Scholar
97Eugster, H.P. et al. (1999) Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol 29, 626-6323.0.CO;2-A>CrossRefGoogle ScholarPubMed
98Cannella, B. and Raine, C.S. (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37, 424-435CrossRefGoogle ScholarPubMed
99Minagar, A. and Alexander, J.S. (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9, 540-549CrossRefGoogle ScholarPubMed
100Duran, I. et al. (1999) Immunological profile of patients with primary progressive multiple sclerosis. Expression of adhesion molecules. Brain 122, 2297-2307CrossRefGoogle ScholarPubMed
101Khoury, S.J. et al. (1999) Changes in serum levels of ICAM and TNF-R correlate with disease activity in multiple sclerosis. Neurology 53, 758-764CrossRefGoogle ScholarPubMed
102Rieckmann, P. et al. (2005) Soluble vascular cell adhesion molecule (VCAM) is associated with treatment effects of interferon beta-1b in patients with secondary progressive multiple sclerosis. J Neurol 252, 526-533CrossRefGoogle ScholarPubMed
103Rieckmann, P. et al. (1994) Serial analysis of circulating adhesion molecules and TNF receptor in serum from patients with multiple sclerosis: cICAM-1 is an indicator for relapse. Neurology 44, 2367-2372CrossRefGoogle ScholarPubMed
104Lin, R. et al. (2006) Lovastatin reduces apoptosis and downregulates the CD40 expression induced by TNF-alpha in cerebral vascular endothelial cells. Curr Neurovasc Res 3, 41-47CrossRefGoogle ScholarPubMed
105Williams, K.C. et al. (1996) PECAM-1 (CD31) expression in the central nervous system and its role in experimental allergic encephalomyelitis in the rat. J Neurosci Res 45, 747-7573.0.CO;2-T>CrossRefGoogle ScholarPubMed
106Omari, K.M. and Dorovini-Zis, K. (2003) CD40 expressed by human brain endothelial cells regulates CD4+ T cell adhesion to endothelium. J Neuroimmunol 134, 166-178CrossRefGoogle ScholarPubMed
107Kieseier, B.C. et al. (1998) Matrix metalloproteinase-9 and -7 are regulated in experimental autoimmune encephalomyelitis. Brain 121, 159-166CrossRefGoogle ScholarPubMed
108Chiodoni, C. et al. (2006) Triggering CD40 on endothelial cells contributes to tumor growth. J Exp Med 203, 2441-2450CrossRefGoogle ScholarPubMed
109Melter, M. et al. (2000) Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96, 3801-3808CrossRefGoogle ScholarPubMed
110Fainardi, E. et al. (2006) Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 12, 294-301CrossRefGoogle ScholarPubMed
111Avolio, C. et al. (2003) Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol 136, 46-53CrossRefGoogle ScholarPubMed
112Sellebjerg, F. and Sorensen, T.L. (2003) Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res Bull 61, 347-355CrossRefGoogle ScholarPubMed
113Clements, J.M. et al. (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74, 85-94CrossRefGoogle ScholarPubMed
114Omari, K.M., Chui, R. and Dorovini-Zis, K. (2004) Induction of beta-chemokine secretion by human brain microvessel endothelial cells via CD40/CD40L interactions. J Neuroimmunol 146, 203-208CrossRefGoogle ScholarPubMed
115Harkness, K.A. et al. (2000) Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 123, 698-709CrossRefGoogle ScholarPubMed
116Hawkins, B.T. et al. (2007) Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50, 202-211CrossRefGoogle ScholarPubMed
117Mori, T. et al. (2002) Downregulation of matrix metalloproteinase-9 and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury. J Neurotrauma 19, 1411-1419CrossRefGoogle ScholarPubMed
118Reijerkerk, A. et al. (2006) Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. Faseb J 20, 2550-2552CrossRefGoogle ScholarPubMed
119Graesser, D. et al. (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109, 383-392CrossRefGoogle ScholarPubMed
120Agrawal, S. et al. (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203, 1007-1019CrossRefGoogle ScholarPubMed
121Becher, B. et al. (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193, 967-974CrossRefGoogle ScholarPubMed
122Samoilova, E.B. et al. (1997) CD40L blockade prevents autoimmune encephalomyelitis and hampers TH1 but not TH2 pathway of T cell differentiation. J Mol Med 75, 603-608CrossRefGoogle Scholar
123Ponomarev, E.D., Shriver, L.P. and Dittel, B.N. (2006) CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol 176, 1402-1410CrossRefGoogle ScholarPubMed
124Nanki, T. et al. (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 165, 6590-6598CrossRefGoogle ScholarPubMed
125Jung, Y. et al. (2006) Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 38, 497-508CrossRefGoogle ScholarPubMed
126Stumm, R.K. et al. (2002) A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 22, 5865-5878CrossRefGoogle ScholarPubMed
127Akassoglou, K. et al. (2003) Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proc Natl Acad Sci U S A 100, 709-714CrossRefGoogle ScholarPubMed
128Engelhardt, B. (2000) Role of glucocorticoids on T cell recruitment across the blood-brain barrier. Z Rheumatol 59 Suppl 2: II/18–21CrossRefGoogle Scholar
129Trojano, M. et al. (1998) Soluble intercellular adhesion molecule-I (sICAM-I) in serum and cerebrospinal fluid of demyelinating diseases of the central and peripheral nervous system. Mult Scler 4, 39-44CrossRefGoogle ScholarPubMed
130Engelhardt, B. et al. (2005) P-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice. J Immunol 175, 1267-1275CrossRefGoogle Scholar
131Osmers, I., Bullard, D.C. and Barnum, S.R. (2005) PSGL-1 is not required for development of experimental autoimmune encephalomyelitis. J Neuroimmunol 166, 193-196CrossRefGoogle Scholar
132Kerfoot, S.M. and Kubes, P. (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169, 1000-1006CrossRefGoogle Scholar
133Auchampach, J.A. et al. (1994) Cloning, sequence comparison and in vivo expression of the gene encoding rat P-selectin. Gene 145, 251-255CrossRefGoogle ScholarPubMed
134Sanders, W.E. et al. (1992) Molecular cloning and analysis of in vivo expression of murine P-selectin. Blood 80, 795-800CrossRefGoogle ScholarPubMed
135Prasad, R. et al. (2006) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates experimental autoimmune encephalomyelitis via modulation of endothelial-monocyte interaction. J Neurosci Res 84, 614-625CrossRefGoogle ScholarPubMed
136Prasad, R. et al. (2007) GSNO attenuates EAE disease by S-nitrosylation-mediated modulation of endothelial-monocyte interactions. Glia 55, 65-77CrossRefGoogle ScholarPubMed
137't Hart, B.A. et al. (2005) Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE. J Neuroimmunol 163, 31-39CrossRefGoogle ScholarPubMed
138Allen, S.D. et al. (2005) Therapeutic peptidomimetic strategies for autoimmune diseases: costimulation blockade. J Pept Res 65, 591-604CrossRefGoogle ScholarPubMed
139Subramanian, S. et al. (2003) Oral feeding with ethinyl estradiol suppresses and treats experimental autoimmune encephalomyelitis in SJL mice and inhibits the recruitment of inflammatory cells into the central nervous system. J Immunol 170, 1548-1555CrossRefGoogle ScholarPubMed
140Matejuk, A. et al. (2004) Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis. J Neurosci Res 77, 119-126CrossRefGoogle ScholarPubMed
141Polanczyk, M. et al. (2003) The protective effect of 17beta-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-alpha. Am J Pathol 163, 1599-1605CrossRefGoogle ScholarPubMed
142Morales, L.B. et al. (2006) Treatment with an estrogen receptor alpha ligand is neuroprotective in experimental autoimmune encephalomyelitis. J Neurosci 26, 6823-6833CrossRefGoogle ScholarPubMed
143Matejuk, A. et al. (2003) 17Beta-estradiol treatment profoundly down-regulates gene expression in spinal cord tissue in mice protected from experimental autoimmune encephalomyelitis. Arch Immunol Ther Exp (Warsz) 51, 185-193Google ScholarPubMed
144Kremenchutzky, M., Morrow, S. and Rush, C. (2007) The safety and efficacy of IFN-beta products for the treatment of multiple sclerosis. Expert Opin Drug Saf 6, 279-288CrossRefGoogle ScholarPubMed
145Perini, P. et al. (2007) The safety profile of cyclophosphamide in multiple sclerosis therapy. Expert Opin Drug Saf 6, 183-190CrossRefGoogle ScholarPubMed
146Perumal, J. et al. (2006) Glatiramer acetate therapy for multiple sclerosis: a review. Expert Opin Drug Metab Toxicol 2, 1019-1029CrossRefGoogle ScholarPubMed
147Zaffaroni, M., Ghezzi, A. and Comi, G. (2006) Intensive immunosuppression in multiple sclerosis. Neurol Sci 27 Suppl 1, S13-17CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Greenwood, J. and Mason, J.C. (2007) Statins and the vascular endothelial inflammatory response. Trends Immunol 28, 88-98CrossRefGoogle ScholarPubMed
Greenwood, J., Steinman, L. and Zamvil, S.S. (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6, 358-370CrossRefGoogle ScholarPubMed
Frohman, E.M., Racke, M.K. and Raine, C.S. (2006) Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 354, 942-955CrossRefGoogle ScholarPubMed
Ubogu, E.E., Cossoy, M.B. and Ransohoff, R.M. (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27, 48-55CrossRefGoogle ScholarPubMed
Friese, M.A. and Fugger, L. (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128, 1747-1763CrossRefGoogle ScholarPubMed
Greenwood, J. and Mason, J.C. (2007) Statins and the vascular endothelial inflammatory response. Trends Immunol 28, 88-98CrossRefGoogle ScholarPubMed
Greenwood, J., Steinman, L. and Zamvil, S.S. (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6, 358-370CrossRefGoogle ScholarPubMed
Frohman, E.M., Racke, M.K. and Raine, C.S. (2006) Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 354, 942-955CrossRefGoogle ScholarPubMed
Ubogu, E.E., Cossoy, M.B. and Ransohoff, R.M. (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27, 48-55CrossRefGoogle ScholarPubMed
Friese, M.A. and Fugger, L. (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128, 1747-1763CrossRefGoogle ScholarPubMed