Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:48:18.218Z Has data issue: false hasContentIssue false

CHARACTER LEVELS AND CHARACTER BOUNDS

Published online by Cambridge University Press:  24 January 2020

ROBERT M. GURALNICK
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA; guralnic@math.usc.edu
MICHAEL LARSEN
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405, USA; mjlarsen@indiana.edu
PHAM HUU TIEP
Affiliation:
Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA; tiep@math.rutgers.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop the concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups. We give characterizations of the level of a character in terms of its Lusztig label and in terms of its degree. Then we prove explicit upper bounds for character values at elements with not-too-large centralizers and derive upper bounds on the covering number and mixing time of random walks corresponding to these conjugacy classes. We also characterize the level of the character in terms of certain dual pairs and prove explicit exponential character bounds for the character values, provided that the level is not too large. Several further applications are also provided. Related results for other finite classical groups are obtained in the sequel [Guralnick et al. ‘Character levels and character bounds for finite classical groups’, Preprint, 2019, arXiv:1904.08070] by different methods.

Type
Algebra
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2020

References

Arad, Z. and Herzog, M. (Eds.), Products of Conjugacy Classes in Groups, Springer Lecture Notes, 1112 (Springer, Berlin, 1985).CrossRefGoogle Scholar
Aschbacher, M., Finite Group Theory, 2nd edn, Cambridge Studies in Advanced Mathematics, 10 (Cambridge University Press, Cambridge, 2000).CrossRefGoogle Scholar
Bezrukavnikov, R., Liebeck, M. W., Shalev, A. and Tiep, P. H., ‘Character bounds for finite groups of Lie type’, Acta Math. 221 (2018), 157.CrossRefGoogle Scholar
Brundan, J., Dipper, R. and Kleshchev, A. S., ‘Quantum linear groups and representations of [[()[]mml:mo lspace="1em" rspace="0em"[]()]]GL[[()[]/mml:mo[]()]]n(𝔽q)’, Mem. Amer. Math. Soc. 149(706) (2001).Google Scholar
Carter, R., Finite Groups of Lie type: Conjugacy Classes and Complex Characters, (Wiley, Chichester, 1985).Google Scholar
Diaconis, P. and Shahshahani, M., ‘Generating a random permutation with random transpositions’, Z. Wahrsch. Verw. Gebiete 57 (1981), 159179.CrossRefGoogle Scholar
Digne, F. and Michel, J., ‘Foncteurs de Lusztig et caractères des groupes linéaires et unitaires sur un corps fini’, J. Algebra 107 (1987), 217255.CrossRefGoogle Scholar
Digne, F. and Michel, J., Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts, 21 (Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
Ennola, V., ‘On the characters of the finite unitary groups’, Ann. Acad. Sci. Fenn. Ser. A I(323) (1963), 35 pages.Google Scholar
Fong, P. and Srinivasan, B., ‘The blocks of finite general and unitary groups’, Invent. Math. 69 (1982), 109153.CrossRefGoogle Scholar
Fulman, J. and Guralnick, R. M., ‘Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements’, Trans. Amer. Math. Soc. 364 (2012), 30233070.CrossRefGoogle Scholar
Fulman, J. and Guralnick, R. M., ‘Enumeration of commuting pairs in Lie algebras over finite fields’, Ann. Comb. 22 (2018), 295316.CrossRefGoogle Scholar
Gantmacher, F. R., Matrix Theory, Vol. 2 (Chelsea, New York, 1977).Google Scholar
Geck, M., ‘On the average values of the irreducible characters of finite groups of Lie type on geometric unipotent classes’, Doc. Math. 1 (1996), 293317.Google Scholar
Geck, M. and Malle, G., ‘On the existence of a unipotent support for the irreducible characters of a finite group of Lie type’, Trans. Amer. Math. Soc. 352 (2000), 429456.CrossRefGoogle Scholar
Geck, M. and Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, London Mathematical Society Monographs (Oxford University Press, Oxford, 2000).Google Scholar
Gérardin, P., ‘Weil representations associated to finite fields’, J. Algebra 46 (1977), 54101.CrossRefGoogle Scholar
Giannelli, E., Kleshchev, A. S., Navarro, G. and Tiep, P. H., ‘Restriction of odd degree characters and natural correspondences’, Int. Math. Res. Not. IMRN 2017(20) (2017), 60896118.Google Scholar
Gross, B. H., ‘Group representations and lattices’, J. Amer. Math. Soc. 3 (1990), 929960.CrossRefGoogle Scholar
Guralnick, R. M., ‘On the singular value decomposition over finite fields and orbits of $GU\times GU$’, Preprint, 2018, arXiv:1805.06999.Google Scholar
Guralnick, R. M., Larsen, M. and Tiep, P. H., ‘Character levels and character bounds for finite classical groups’, Preprint, 2019, arXiv:1904.08070.Google Scholar
Guralnick, R. M., Magaard, K., Saxl, J. and Tiep, P. H., ‘Cross characteristic representations of symplectic groups and unitary groups’, J. Algebra 257 (2002), 291347. Addendum, J. Algebra 299 (2006), 443–446.CrossRefGoogle Scholar
Guralnick, R. M. and Tiep, P. H., ‘Cross characteristic representations of even characteristic symplectic groups’, Trans. Amer. Math. Soc. 356 (2004), 49695023.CrossRefGoogle Scholar
Gurevich, S. and Howe, R., ‘Small representations of finite classical groups’, inRepresentation Theory, Number Theory, and Invariant Theory, Progress in Mathematics, 323 (Birkhäuser/Springer, Cham, 2017), 209234.CrossRefGoogle Scholar
Gurevich, S. and Howe, R., ‘Rank and duality in representation theory’, Preprint.Google Scholar
Howe, R. E., ‘On the characters of Weil’s representations’, Trans. Amer. Math. Soc. 177 (1973), 287298.Google Scholar
Isaacs, I. M., Character Theory of Finite Groups (AMS-Chelsea, Providence, 2006).Google Scholar
James, G., ‘The irreducible representations of the finite general linear groups’, Proc. Lond. Math. Soc. (3) 52 (1986), 236268.CrossRefGoogle Scholar
James, G., ‘The decomposition matrices of [[()[]mml:mo lspace="1em" rspace="0em"[]()]]GL[[()[]/mml:mo[]()]]n(q) for n⩽10’, Proc. Lond. Math. Soc. (3) 60 (1990), 225265.CrossRefGoogle Scholar
James, G. and Kerber, A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16 (Addison-Wesley Publishing Co., Reading, MA, 1981).Google Scholar
Kawanaka, N., ‘Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field. I’, Invent. Math. 84 (1986), 575616.CrossRefGoogle Scholar
Kleshchev, A. S. and Tiep, P. H., ‘Representations of finite special linear groups in non-defining characteristic’, Adv. Math. 220 (2009), 478504.CrossRefGoogle Scholar
Kleshchev, A. S. and Tiep, P. H., ‘Representations of general linear groups which are irreducible over subgroups’, Amer. J. Math. 132 (2010), 425473.CrossRefGoogle Scholar
Kupershmidt, B. A., ‘q-Newton binomial: from Euler to Gauss’, J. Nonlinear Math. Phys. 7 (2000), 244262.CrossRefGoogle Scholar
Larsen, M., Malle, G. and Tiep, P. H., ‘The largest irreducible representations of simple groups’, Proc. Lond. Math. Soc. (3) 106 (2013), 6596.CrossRefGoogle Scholar
Larsen, M., Shalev, A. and Tiep, P. H., ‘Probabilistic Waring problems for finite simple groups’, Ann. of Math. (2) 190 (2019), 561608.CrossRefGoogle Scholar
Liebeck, M. W., O’Brien, E. A., Shalev, A. and Tiep, P. H., ‘The Ore conjecture’, J. Eur. Math. Soc. (JEMS) 12 (2010), 9391008.CrossRefGoogle Scholar
Liebeck, M. W., O’Brien, E. A., Shalev, A. and Tiep, P. H., ‘Products of squares in finite simple groups’, Proc. Amer. Math. Soc. 140 (2012), 2133.CrossRefGoogle Scholar
Liebeck, M. W. and Shalev, A., ‘Character degrees and random walks in finite groups of Lie type’, Proc. Lond. Math. Soc. (3) 90 (2005), 6186.CrossRefGoogle Scholar
Lusztig, G., Characters of Reductive Groups over a Finite Field, Annals of Mathematics Studies, 107 (Princeton Univ. Press, Princeton, 1984).CrossRefGoogle Scholar
Macdonald, I. G., Symmetric Functions and Hall Polynomials, 2nd edn, Oxford Mathematical Monographs (Oxford University Press, New York, 1995), with contributions by A. Zelevinsky.Google Scholar
Malle, G., ‘Unipotente Grade imprimitiver komplexer Spiegelungsgruppen’, J. Algebra 177 (1995), 768826.CrossRefGoogle Scholar
Olsson, J. B., ‘Remarks on symbols, hooks and degrees of unipotent characters’, J. Combin. Theory Ser. A 42 (1986), 223238.CrossRefGoogle Scholar
de Seguins Pazzis, C., ‘Invariance of simultaneous similarity and equivalence of matrices under extension of the ground field’, Linear Algebra Appl. 433 (2010), 618624.CrossRefGoogle Scholar
Shalev, A., ‘Commutators, words, conjugacy classes and character methods’, Turk. J. Math. 31 (2007), 131148.Google Scholar
Shalev, A. and Tiep, P. H., ‘Some conjectures on Frobenius’ character sum’, Bull. Lond. Math. Soc. 49 (2017), 895902.CrossRefGoogle Scholar
Srinivasan, B., ‘The modular representation ring of a cyclic p-group’, Proc. Lond. Math. Soc. (3) 14 (1974), 677688.Google Scholar
Srinivasan, B., ‘Weil representations of finite classical groups’, Invent. Math. 51 (1979), 143153.CrossRefGoogle Scholar
Taussky, O. and Zassenhaus, H., ‘On the similarity transformation between a matrix and its transpose’, Pacific J. Math. 9 (1959), 893896.CrossRefGoogle Scholar
Taylor, J. and Tiep, P. H., ‘Lusztig induction, unipotent support, and character bounds’, Preprint, 2018, arXiv:1809.00173.Google Scholar
Thiem, N. and Vinroot, C. R., ‘On the characteristic map of finite unitary groups’, Adv. Math. 210 (2007), 707732.CrossRefGoogle Scholar
Tiep, P. H., ‘Dual pairs of finite classical groups in cross characteristic’, Contemp. Math. 524 (2010), 161179.CrossRefGoogle Scholar
Tiep, P. H., ‘Weil representations of finite general linear groups and finite special linear groups’, Pacific J. Math. 279 (2015), 481498.CrossRefGoogle Scholar
Tiep, P. H. and Zalesskii, A. E., ‘Some characterizations of the Weil representations of the symplectic and unitary groups’, J. Algebra 192 (1997), 130165.CrossRefGoogle Scholar
Weil, A., ‘Sur certains groupes d’opérateurs unitaires’, Acta Math. 111 (1964), 143211.CrossRefGoogle Scholar