Article contents
MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS
Published online by Cambridge University Press: 20 January 2020
Abstract
We determine the order of magnitude of $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$, where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, and $0\leqslant q\leqslant 1$. In the Steinhaus case, this is equivalent to determining the order of $\lim _{T\rightarrow \infty }\frac{1}{T}\int _{0}^{T}|\sum _{n\leqslant x}n^{-it}|^{2q}\,dt$.
In particular, we find that $\mathbb{E}|\sum _{n\leqslant x}f(n)|\asymp \sqrt{x}/(\log \log x)^{1/4}$. This proves a conjecture of Helson that one should have better than squareroot cancellation in the first moment and disproves counter-conjectures of various other authors. We deduce some consequences for the distribution and large deviations of $\sum _{n\leqslant x}f(n)$.
The proofs develop a connection between $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$ and the $q$th moment of a critical, approximately Gaussian, multiplicative chaos and then establish the required estimates for that. We include some general introductory discussion about critical multiplicative chaos to help readers unfamiliar with that area.
MSC classification
- Type
- Number Theory
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author 2020
References
- 28
- Cited by