Article contents
COARSE AND FINE GEOMETRY OF THE THURSTON METRIC
Published online by Cambridge University Press: 26 May 2020
Abstract
We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.
MSC classification
- Type
- Differential Geometry and Geometric Analysis
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s) 2020
References
- 6
- Cited by