Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T22:12:34.096Z Has data issue: false hasContentIssue false

Curves on K3 surfaces in divisibility 2

Published online by Cambridge University Press:  01 February 2021

Younghan Bae
Affiliation:
ETH Zürich, Department of Mathematics, Zürich, Switzerland; E-mail: younghan.bae@math.ethz.ch
Tim-Henrik Buelles
Affiliation:
ETH Zürich, Department of Mathematics, Zürich, Switzerland; E-mail: buelles@math.ethz.ch

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.

Type
Mathematical Physics
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, 7 (Springer-Verlag, New York, 1976).Google Scholar
Bae, Y., ‘Tautological relations for stable maps to a target variety’, Ark. Mat. 58(1) (2020), 1938.CrossRefGoogle Scholar
Bae, Y., Holmes, D., Pandharipande, R., Schmitt, J. and Schwarz, R., ‘Pixton’s formula and Abel-Jacobi theory on the Picard stack’, Preprint, 2020, arXiv:2004.08676.Google Scholar
Bershadsky, M., Cecotti, S., Ooguri, H. and Vafa, C., ‘Holomorphic anomalies in topological field theories’, Nuclear Phys. B 405(2–3) (1993), 279304.CrossRefGoogle Scholar
Bershadsky, M., Cecotti, S., Ooguri, H. and Vafa, C., ‘Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes’, Comm. Math. Phys. 165(2) (1994), 311427.CrossRefGoogle Scholar
Bousseau, P., Fan, H., Guo, S. and Wu, L., ‘Holomorphic anomaly equation for $({\mathbb{P}}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb{P}}^2$’, Preprint, 2020, arXiv:2001.05347.Google Scholar
Bryan, J. and Leung, N. C., ‘The enumerative geometry of $K3$ surfaces and modular forms’, J. Amer. Math. Soc. 13(2) (2000), 371410.CrossRefGoogle Scholar
Bryan, J., Oberdieck, G., Pandharipande, R. and Yin, Q., ‘Curve counting on abelian surfaces and threefolds’, Algebr. Geom. 5(4) (2018), 398463.Google Scholar
Buelles, T.-H., ‘Gromov–Witten classes of K3 surfaces’, Preprint, 2019, arXiv:1912.00389.Google Scholar
Buryak, A., Shadrin, S. and Zvonkine, D., ‘Top tautological group of ${\mathbf{\mathcal{M}}}_{g,n}$’, J. Eur. Math. Soc. (JEMS) 18(2) (2016), 29252951.CrossRefGoogle Scholar
Chang, H.-L., Guo, S. and Li, J., ‘BCOV’s Feynman rule of quintic $3$-folds’, Preprint, 2018, arXiv:1810.00394.Google Scholar
Clader, E., Janda, F., Wang, X. and Zakharov, D., ‘Topological recursion relations from Pixton’s formula’, Preprint, 2017, arXiv:1704.02011.Google Scholar
Coates, T., Givental, A. and Tseng, H.-H., ‘Virasoro constraints for toric bundles’, Preprint, 2015, arXiv:1508.06282.Google Scholar
Duke, W. and Jenkins, P., ‘On the zeros and coefficients of certain weakly holomorphic modular forms’, Pure Appl. Math. Q. 4(4) (2008), 13271340.CrossRefGoogle Scholar
Faber, C. and Pandharipande, R., ‘Relative maps and tautological classes’, J. Eur. Math. Soc. (JEMS) 7(1) (2005), 1349.CrossRefGoogle Scholar
Guo, S., Janda, F. and Ruan, Y., ‘Structure of higher genus Gromov-Witten invariants of quintic 3-folds’, Preprint, 2018, arXiv:1812.11908.Google Scholar
Janda, F., Pandharipande, R., Pixton, A. and Zvonkine, D., ‘Double ramification cycles on the moduli spaces of curves’, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221266.CrossRefGoogle Scholar
Kaneko, M. and Zagier, D., ‘A generalized Jacobi theta function and quasimodular forms’, in The Moduli Space of Curves (Texel Island, 1994), Progress in Mathematics, 129 (Birkhäuser Boston, Boston, MA, 1995), 165172.CrossRefGoogle Scholar
Keel, S., ‘Intersection theory of moduli space of stable $n$-pointed curves of genus zero’, Trans. Amer. Math. Soc. 330(2) (1992), 545574.Google Scholar
Kiem, Y.-H. and Li, J., ‘Low degree GW invariants of surfaces II’, Sci. China Math. 54(8) (2011), 16791706.CrossRefGoogle Scholar
Klemm, A., Maulik, D., Pandharipande, R. and Scheidegger, E., ‘Noether-Lefschetz theory and the Yau-Zaslow conjecture’, J. Amer. Math. Soc. 23(4) (2010), 10131040.CrossRefGoogle Scholar
Koblitz, N., Introduction to Elliptic Curves and Modular Forms, second edn, Graduate Texts in Mathematics, 97 (Springer-Verlag, New York, 1993).CrossRefGoogle Scholar
Kramer, R., Labib, F., Lewanski, D. and Shadrin, S., ‘The tautological ring of ${\mathbf{\mathcal{M}}}_{g,n}$ via Pandharipande-Pixton-Zvonkine $r$-spin relations’, Algebr. Geom. 5(6) (2018), 703727.Google Scholar
Lee, J. and Leung, N. C., ‘Yau-Zaslow formula on $K{3}$ surfaces for non-primitive classes’, Geom. Topol. 9 (2005), 19772012.CrossRefGoogle Scholar
Lee, J. and Leung, N. C., ‘Counting elliptic curves in $K{3}$ surfaces’, J. Algebraic Geom. 15(4) (2006), 591601.CrossRefGoogle Scholar
Lho, H. and Pandharipande, R., ‘Stable quotients and the holomorphic anomaly equation’, Adv. Math. 332 (2018), 349402.CrossRefGoogle Scholar
Li, J., ‘A degeneration formula of GW-invariants’, J. Differential Geom. 60(2) (2002), 199293.CrossRefGoogle Scholar
Maulik, D. and Pandharipande, R., ‘A topological view of Gromov-Witten theory’, Topology 45(5) (2006), 887918.CrossRefGoogle Scholar
Maulik, D., Pandharipande, R. and Thomas, R. P., ‘Curves on $K{3}$ surfaces and modular forms’, J. Topol. 3(4) (2010), 937996. With an appendix by A. Pixton.CrossRefGoogle Scholar
Maulik, D. and Pandharipande, R., ‘Gromov-Witten theory and Noether-Lefschetz theory’, in A Celebration of Algebraic Geometry, Clay Mathematics Proceedings, 18 (American Mathematical Society, Providence, RI, 2013), 469507.Google Scholar
Movasati, H., ‘On differential modular forms and some analytic relations between Eisenstein series’, Ramanujan J. 17(1) (2008), 5376.CrossRefGoogle Scholar
Oberdieck, G. and Pandharipande, R., ‘Curve counting on $K{3}\times E$, the Igusa cusp form ${\chi}_{10}$, and descendent integration’, in K3 Surfaces and Their Moduli, Progress in Mathematics, 315 (Birkhäuser/Springer, Cham, Switzerland, 2016), 245278.CrossRefGoogle Scholar
Oberdieck, G. and Pixton, A., ‘Holomorphic anomaly equations and the Igusa cusp form conjecture’, Invent. Math. 213(2) (2018), 507587.CrossRefGoogle Scholar
Oberdieck, G. and Pixton, A., ‘Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations’, Geom. Topol. 23(3) (2019), 14151489.CrossRefGoogle Scholar
Okounkov, A. and Pandharipande, R., ‘Virasoro constraints for target curves’, Invent. Math. 163(1) (2006), 47108.CrossRefGoogle Scholar
Pandharipande, R. and Thomas, R. P., ‘The Katz-Klemm-Vafa conjecture for $K{3}$ surfaces’, Forum Math. Pi 4(e4) (2016), 111.CrossRefGoogle Scholar
Petersen, D., ‘The structure of the tautological ring in genus one’, Duke Math. J. 163(4) (2014), 777793.CrossRefGoogle Scholar
Pixton, A., The Gromov-Witten Theory of an Elliptic Curve and Quasimodular Forms, Bachelor’s thesis, Princeton University, 2008.Google Scholar
Zagier, D., Elliptic Modular Forms and Their Applications: The 1-2-3 of Modular Forms, Universitext, (Springer, Berlin, 2008).CrossRefGoogle Scholar