Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T05:21:41.599Z Has data issue: false hasContentIssue false

Eichler–Selberg relations for singular moduli

Published online by Cambridge University Press:  10 December 2024

Yuqi Deng
Affiliation:
Graduate School of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; E-mail: deng.yuqi.608@s.kyushu-u.ac.jp
Toshiki Matsusaka
Affiliation:
Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; E-mail: matsusaka@math.kyushu-u.ac.jp
Ken Ono*
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA, 22904, USA
*
E-mail: ko5wk@virginia.edu (corresponding author)

Abstract

The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli, where one views class numbers as traces of the constant function $j_0(\tau )=1$. More generally, we consider the singular moduli for the Hecke system of modular functions

For each $\nu \geq 0$ and $m\geq 1$, we obtain an Eichler–Selberg relation. For $\nu =0$ and $m\in \{1, 2\},$ these relations are Kaneko’s celebrated singular moduli formulas for the coefficients of $j(\tau ).$ For each $\nu \geq 1$ and $m\geq 1,$ we obtain a new Eichler–Selberg trace formula for the Hecke action on the space of weight $2 \nu +2$ cusp forms, where the traces of $j_m(\tau )$ singular moduli replace Hurwitz–Kronecker class numbers. These formulas involve a new term that is assembled from values of symmetrized shifted convolution L-functions.

Type
Number Theory
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press

1 Introduction and statement of results

Let $j(\tau )$ be the usual modular function for $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ with Fourier expansion

$$ \begin{align*}j(\tau)=q^{-1}+744+196884q+21493760q^2+\cdots, \end{align*} $$

where Its values at imaginary quadratic arguments in the upper-half of the complex plane are examples of singular moduli [Reference Zagier34]. They are algebraic integers that generate Hilbert class fields of imaginary quadratic fields, in addition to serving as isomorphism class invariants of elliptic curves with complex multiplication. Well-known examples of these values include

$$ \begin{align*}j\kern1pt\left(\frac{1+\sqrt{-3}}{2}\right)=0,\ \ j(i)=1728, \ \ {\mathrm{and}}\ \ j\kern1pt\left(\frac{1+\sqrt{-15}}{2}\right)=\frac{-191025-85995\sqrt{5}}{2}. \end{align*} $$

We consider the sequence of modular functions that satisfy

$$ \begin{align*}j_m(\tau) = q^{-m} + O(q). \end{align*} $$

Each $j_m(\tau )$ is a monic degree m polynomial in $\mathbb {Z}[j(\tau )],$ and the set $\{j_m(\tau ) : m \ge 0\}$ is a basis of $M^!_0$ , the space of weakly holomorphic modular functions on $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ . The first examples are $j_0(\tau ) = 1$ and

$$ \begin{align*} j_1(\tau) &= j(\tau) - 744 = q^{-1} + 196884q + \cdots,\\ j_2(\tau) &= j(\tau)^2 - 1488j(\tau) + 159768 = q^{-2} + 42987520q + \cdots,\\ j_3(\tau) &= j(\tau)^3 - 2232 j(\tau)^2 + 1069956 j(\tau) - 36866976 = q^{-3} + 2592899910q + \cdots. \end{align*} $$

In terms of the Hecke operators $T_m$ (see [Reference Serre28, Ch. VII] and [Reference Zagier34]), for positive integers m, we have

(1.1) $$ \begin{align} j_m(\tau)=q^{-m}+\sum_{n=1}^{\infty}c_m(n)q^n= mT_m\left(j(\tau)-744\right). \end{align} $$

We shall derive infinitely many relations for the singular moduli of these functions. To make this precise, for positive integers d with $-d\equiv 0,1\ \pmod 4$ , we let $\mathcal {Q}_d$ be the set of integral positive definite binary quadratic forms with discriminant $-d=B^2-4AC$ . The group acts on $\mathcal {Q}_d$ by

and does so with finitely many orbits, the number of which is the discriminant $-d$ class number. For each $Q \in \mathcal {Q}_d$ , we let $\alpha _Q \in \mathbb {H}$ be a root of $Q(\tau ,1) = 0.$ The numbers $j_m(\alpha _Q)$ are its singular moduli.

We study the weighted traces of these values which are defined as follows. If we let $\Gamma _Q$ be the stabilizer of Q in $\Gamma $ , then it is well known that

$$\begin{align*}\#\Gamma_Q = \begin{cases} 3 &\text{if } Q \sim a(X^2 + XY + Y^2),\\ 2 &\text{if } Q \sim a(X^2 + Y^2),\\ 1 &\text{if otherwise}. \end{cases} \end{align*}$$

Following Zagier [Reference Zagier34], the trace functions we consider are

(1.2)

For $m = 0$ , where $j_0(\tau )=1,$ we obtain the Hurwitz–Kronecker class numbers These numbers are prominent in the Eichler–Selberg trace formula (for example, see [Reference Zagier32]) for the trace $\mathrm {Tr}(n;2k)$ of the action of the Hecke operators $T_n$ on $S_{2k},$ the complex vector space of weight $2k$ cusp forms on $\operatorname {\mathrm {SL}}_2(\mathbb {Z}).$

Theorem (The Eichler–Selberg trace formula).

For integers $k \ge 2$ , we have

(1.3) $$ \begin{align} \mathrm{Tr}(n; 2k) = -\frac{1}{2} \sum_{r \in \mathbb{Z}} p_{2k} (r,n) \mathbf{t}_0(4n-r^2) - \lambda_{2k-1}(n), \end{align} $$

where and

(1.4) $$ \begin{align} p_k(r,n) = \sum_{0 \le j \le \frac{k}{2}-1} (-1)^j \binom{k-2-j}{j} n^j r^{k-2-2j} = \mathrm{Coeff}_{X^{k-2}} \left(\frac{1}{1-rX+nX^2}\right). \end{align} $$

We generalize these formulas to traces of singular moduli, where (1.3) are the $m=0$ cases of a doubly infinite suite of formulas in $m\geq 0$ and $\nu \geq 0.$ The general formulas involve the trace functions $\mathbf {t}_m(4n-r^2)$ . To make this precise, for every $\nu \geq 0$ and $m\geq 0,$ we define the generating function

(1.5)

where for $d\le 0$ , we let

(1.6)

By (1.3), each $\mathrm {Tr}(n;2k)$ is essentially the nth coefficient of $\mathcal {G}_{0,k-1}(\tau ).$ Therefore, we refer to any explicit formula for $\mathcal {G}_{m,\nu }(\tau )$ as an Eichler–Selberg relation for m and $\nu .$

Our first result establishes that these generating functions are weakly holomorphic modular forms, meromorphic modular forms whose poles (if any) are supported at cusps. For convenience, we let $M^!_k$ denote the space of such weight k forms on $\operatorname {\mathrm {SL}}_2(\mathbb {Z}).$

Theorem 1.1. If $\nu \geq 0$ and $m\geq 1,$ then we have that $\mathcal {G}_{m,\nu }(\tau )\in M^!_{2\nu +2}.$

The $\nu =0$ Eichler–Selberg relations only involve derivatives of the $j_m(\tau )$ , as they generate $M^!_2$ due to the absence of holomorphic modular forms. For convenience, we let .

Theorem 1.2. For positive integers $m,$ the following are true.

1) We have

$$\begin{align*}\mathcal{G}_{m,0}(\tau) = -\frac{1}{2}\sum_{\kappa \mid m} \sum_{0 < r < \kappa} \frac{\kappa}{r(\kappa-r)} \cdot Dj_{r(\kappa-r)}(\tau). \end{align*}$$

2) If n is a positive integer, then we have

$$\begin{align*}\sum_{r \in \mathbb{Z}} \mathbf{t}_m(4n-r^2) = n \sum_{\kappa \mid m} \sum_{0 < r < \kappa} \frac{\kappa}{r(\kappa-r)} c_{r(\kappa-r)}(n). \end{align*}$$

Example. Theorem 1.2, with $m\in \{1, 2\}$ , gives Kaneko’s identities [Reference Kaneko16]

$$ \begin{align*} \sum_{r\in \mathbb{Z}} \mathbf{t}_1(4n-r^2)=0\ \ \ \ {\mathrm{and}}\ \ \ \ \sum_{r\in \mathbb{Z}} \mathbf{t}_2(4n-r^2)=2nc_1(n), \end{align*} $$

which he used to derive his well-known singular moduli formula for the coefficients of $j(\tau )$

$$ \begin{align*} c_1(n)=\frac{1}{n}\left \{ \sum_{r \in \mathbb{Z}} \mathbf{t}_1(n-r^2)+\sum_{r\geq 1\ odd}\left( (-1)^n \mathbf{t}_1(4n-r^2)-\mathbf{t}_1(16n-r^2)\right)\right\}. \end{align*} $$

Such formulas have been extended to higher levels N in subsequent works [Reference Matsusaka18, Reference Matsusaka and Osanai19, Reference Ohta25]. Finally, as a different kind of generalization, Theorem 1.2 (2) shows how to express the coefficients of each $j_m(\tau )$ in terms of traces of singular moduli.

For $\nu> 0$ , there are holomorphic modular forms, and so the relations have richer structure. To make this precise, we recall the weight $2k$ modular Poincaré series [Reference Bringmann, Folsom, Ono and Rolen4, Ch. 6.3]

(1.7)

where $|_{2k}$ is the slash operator, $\Gamma =\operatorname {\mathrm {PSL}}_2(\mathbb {Z})$ , and $\Gamma _{\infty }$ is the stabilizer for the cusp infinity. The usual Eisenstein series is $P_{2k,0}(\tau ) = E_{2k}(\tau ),$ and for negative integers $-h$ , we have the weakly holomorphic

(1.8) $$ \begin{align} P_{2k,-h}(\tau)=q^{-h}+\sum_{n=1}^{\infty}c_{2k,-h}(n)q^n. \end{align} $$

For small $\nu ,$ when there are no cusp forms, we obtain the following Eichler–Selberg relations.

Theorem 1.3. If $\nu \in \{1, 2, 3, 4, 6\},$ then for every positive integer m, the following are true.

1) We have that

$$\begin{align*}\mathcal{G}_{m,\nu}(\tau) = \sum_{\kappa \mid m} \sum_{0 < r \le \kappa} r^{2\nu+1} P_{2\nu+2, -r(\kappa-r)}(\tau). \end{align*}$$

2) If n is a positive integer, then we have

$$\begin{align*}\sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) \mathbf{t}_m(4n-r^2) = -2 \sum_{\kappa \mid m} \sum_{0 < r \le \kappa} r^{2\nu+1} c_{2\nu+2, -r(\kappa-r)}(n). \end{align*}$$

Remark. The Poincaré series in Theorem 1.3 are easily described in terms of the Eisenstein series

$$ \begin{align*}E_4(\tau)=1+240\sum_{n=1}^{\infty}\sigma_3(n)q^n \ \ \ {\mathrm{and}}\ \ \ E_6(\tau)=1-504\sum_{n=1}^{\infty} \sigma_5(n)q^n. \end{align*} $$

For $k\in \{4, 6, 8, 10, 14\},$ we have

$$ \begin{align*}P_{k,-1}(\tau) = \begin{cases} E_4(\tau)\cdot (j(\tau)-984) &\mathrm{if}\ k=4,\\ E_6(\tau)\cdot (j(\tau)-240) &\mathrm{if}\ k=6,\\ E_4^2(\tau)\cdot (j(\tau)-1224) &\mathrm{if}\ k=8,\\ E_4(\tau)E_6(\tau)\cdot (j(\tau)-480) &\mathrm{if}\ k=10,\\ E_4^2(\tau)E_6(\tau)\cdot (j(\tau)-720) &\mathrm{if}\ k=14. \end{cases} \end{align*} $$

Generalizing (1.1), for $m>1,$ we have the Hecke formula

$$ \begin{align*}P_{k,-m}(\tau) = m^{-k+1} \cdot T_m P_{k,-1}(\tau). \end{align*} $$

Example. For positive integers $n,$ Theorem 1.3 with $\nu = 1$ and $m=1$ implies that

$$ \begin{align*}\sum_{r\in \mathbb{Z}} r^2 \mathbf{t}_1(4n-r^2)=-480\sigma_3(n). \end{align*} $$

Cusp forms arise in the general case. Special values of symmetrized shifted convolution L-functions, and Petersson norms control these cusp forms in these Eichler–Selberg relations. Throughout, we let $d_{2k}$ denote the dimension of $S_{2k}$ , the space of weight $2k$ cusp forms on $\operatorname {\mathrm {SL}}_2(\mathbb {Z}).$

Theorem 1.4. If $\nu \geq 1$ and $m \ge 1$ , then we have

$$ \begin{align*} \mathcal{G}_{m,\nu}(\tau)= &\sum_{\kappa \mid m} \sum_{0 < r \le \kappa} r^{2\nu+1} P_{2\nu+2, -r(\kappa-r)}(\tau) -\sum_{j=1}^{d_{2\nu+2}} \left(24\sigma_1(m) - \frac{\Gamma(2\nu+1)}{(4\pi)^{2\nu+1}} \frac{\widehat{L}(f_j, m; 2\nu+1)}{\|f_j\|^2} \right) f_j, \end{align*} $$

where the $f_j$ ’s are normalized Hecke eigenforms of $S_{2\nu +2}$ and

Example. Example 1 of [Reference Mertens and Ono22] gives $\widehat {L}(\Delta , 1; 11)=-33.383\dots $ and $\widehat {L}(\Delta , 2; 11)=266.439\dots ,$ which arise in Theorem 1.4 when $\nu = 5$ and $m\in \{1, 2\}.$ By brute force computation, we have

$$ \begin{align*} \mathcal{G}_{1,5}(\tau) &= E_{12}(\tau) -\frac{82104}{691} \Delta(\tau),\\ \mathcal{G}_{2,5}(\tau) &= P_{12,-1}(\tau) + 2049 E_{12}(\tau) - \left(\alpha - \frac{1746612}{691} \right) \Delta(\tau), \end{align*} $$

where

$$ \begin{align*} P_{12,-1}(\tau) &= \Delta(\tau) (j_2(\tau) + 24 j_1(\tau) + 324 + \alpha) = q^{-1} + \alpha q + \cdots, \end{align*} $$

with $\alpha = 1842.894\ldots $ . Using $\|\Delta \|^2 = \langle \Delta , \Delta \rangle = 0.0000010353\ldots ,$ these numerics illustrate Theorem 1.4

$$ \begin{align*} \frac{82104}{691} &= 24 + \frac{65520}{691} = 24 - \frac{\Gamma(11)}{(4\pi)^{11}} \frac{(-33.383\ldots)}{\|\Delta\|^2},\\ \alpha - \frac{1746612}{691} &= 24 \cdot 3 - \frac{\Gamma(11)}{(4\pi)^{11}} \frac{(266.439\ldots)}{\|\Delta\|^2}. \end{align*} $$

Theorem 1.4 gives a doubly infinite family of modified Eichler–Selberg trace formulas, where Hecke eigenvalues are weighted by shifted convolution L-values and where traces of singular moduli $\mathbf {t}_m(4n-r^2)$ replace the Hurwitz–Kronecker class numbers $\mathbf {t}_0(4n-r^2)=H(4n-r^2).$ To make this precise, we let

(1.9)

where, as above, $c_{f_j}(n)$ is the eigenvalue of $T_n$ for the Hecke eigenform $f_j\in S_{2k}.$

Corollary 1.5. If $2k \in 2\mathbb {Z}^+\setminus \{2, 4, 6, 8, 10, 14\}$ and m is a positive integer, then we have

$$ \begin{align*}\mathrm{Tr}(n; 2k) =\frac{1}{ 24 \sigma_1(m)}\cdot\left( \mathrm{Tr}_m(n; 2k) +\frac{1}{2} \sum_{r \in \mathbb{Z}} p_{2k}(r,n) \mathbf{t}_m(4n-r^2) + \sum_{\kappa \mid m} \sum_{0 < r \le \kappa} r^{2k-1} c_{2k, -r(\kappa-r)}(n)\right). \end{align*} $$

To obtain these results, we adapt Zagier’s novel (unpublished) proof [Reference Zagier32] of the Eichler–Selberg trace formula. In Section 2, we recall his proof and his work on traces of singular moduli, and we prove Theorems 1.11.3. The proof of Theorem 1.4 is more involved, as we make use of the theory of vector-valued Poincaré series, the arithmetic of half-integral weight Kloosterman sums, Rankin–Cohen bracket operators and symmetrized shifted convolution L-functions. In Section 3, we recall important formalities regarding vector-valued modular forms that transform according to the Weil representation. In Section 4, we relate the Fourier coefficients of half-integral weight Maass–Poincaré series to traces of singular moduli, and finally, in Section 5, we assemble these facts to prove Theorem 1.4.

2 Zagier’s work and the proofs of Theorems 1.11.3

In unpublished notes [Reference Zagier32], Zagier gave a novel proof of the Eichler–Selberg trace formula using harmonic Maass forms (see [Reference Bruinier and Funke7] or [Reference Bringmann, Folsom, Ono and Rolen4] for background on harmonic Maass forms). Saad and the third author [Reference Ono and Saad26] obtained further such formulas by modifying his argument. We adapt his argument in a different aspect.

2.1 Zagier’s Proof

We begin by sketching his proof, which relies on the following theorem.

Theorem (Zagier [Reference Zagier33]).

We have that

is a harmonic Maass form of weight $3/2$ on $\Gamma _0(4)$ , where and $\Gamma (s; x)$ is the incomplete Gamma function. Its holomorphic part is the Fourier series

Zagier uses a sequence of modular forms he constructs from $\mathcal {H}(\tau )$ and Jacobi’s weight 1/2 theta function

(2.1)

To define these modular forms, he requires Atkin’s U-operator defined by

(2.2)

and the Rankin–Cohen bracket differential operators. For modular forms f and g (possibly non-holomorphic), with weights k and l, respectively, these operators are defined by

(2.3)

where . These functions are weight $2\nu +k+l$ (possibly non-holomorphic) modular forms, which one can project to obtain a holomorphic modular form via an integral map $\pi _{\mathrm {hol}}.$

Zagier studies the resulting sequence of modular forms $\pi _{\mathrm {hol}}([\mathcal {H}, \theta ]_\nu |U_4)$ , where $\nu \geq 1$ . He computes them in two ways. The first method is combinatorial, and it uses the identity (for example, see [Reference Mertens20, Reference Mertens21])

$$\begin{align*}\pi_{\mathrm{hol}}([\mathcal{H}, \theta]_\nu|U_4) = [\mathcal{H}^+, \theta]_\nu|U_4 + 2 \binom{2\nu}{\nu} \sum_{n=1}^\infty \lambda_{2\nu+1}(n) q^n. \end{align*}$$

A straightforward brute force calculation with (2.3) gives

(2.4) $$ \begin{align} [\mathcal{H}^+, \theta]_\nu |U_4 = \binom{2\nu}{\nu} \sum_{n=0}^\infty \left(\sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) H(4n-r^2) \right) q^n. \end{align} $$

Therefore, the nth coefficient of $\pi _{\mathrm {hol}}([\mathcal {H}, \theta ]_\nu |U_4)$ is

(2.5) $$ \begin{align} \binom{2\nu}{\nu} \left(\sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) H(4n-r^2) + 2\lambda_{2\nu+1}(n) \right). \end{align} $$

As an alternate calculation, Zagier combines (for example, see [Reference Eichler and Zagier13, Theorem 5.5]) the Rankin–Cohen bracket operators with Hecke–Petersson theory. As each $\pi _{\mathrm {hol}}([\mathcal {H}, \theta ]_\nu |U_4)$ is a cusp form, we have

$$ \begin{align*} \pi_{\mathrm{hol}}([\mathcal{H}, \theta]_\nu |U_4) = \sum_{j=1}^{d_{2\nu+2}} a_j f_j, \end{align*} $$

where the $f_j$ ’s form a basis of Hecke eigenforms for $S_{2\nu +2}$ . In particular, we have $T_n f_j = c_{f_j}(n) f_j,$ where

$$ \begin{align*}f_j(\tau)=q+\sum_{n\geq 2} c_{f_j}(n)q^n.\end{align*} $$

To compute the $a_j,$ he expresses $\mathcal {H}(\tau )$ in terms of Eisenstein series (see [Reference Ono and Saad26, Section 2.2] or [Reference Hirzebruch and Zagier14, Ch. 2]), which allows him to use the method of unfolding and the Rankin–Selberg method to derive the Petersson inner product identity (for example, see [Reference Bringmann, Folsom, Ono and Rolen4, Ch. 6.3])

$$ \begin{align*} a_j \langle f_j, f_j \rangle = \langle \pi_{\mathrm{hol}}([\mathcal{H}, \theta]_\nu |U_4), f_j \rangle = -2 \binom{2\nu}{\nu} \langle f_j, f_j \rangle. \end{align*} $$

For each j, this gives $a_j=-2\binom {2\nu }{\nu }.$ Therefore, the nth coefficient of $\pi _{\mathrm {hol}}([\mathcal {H}, \theta ]_\nu |U_4)$ is $-2 \binom {2\nu }{\nu }\cdot \mathrm {Tr}(n; 2\nu +2),$ which when equated with (2.5) gives the Eichler–Selberg trace formula.

2.2 Proofs of Theorems 1.11.3

Zagier’s proof begins with the fact that $\mathcal {H}^+(\tau )$ is the holomorphic part of a weight 3/2 harmonic Maass form. In 2002, Zagier [Reference Zagier34] greatly generalized this fact.

Theorem 5 of [Reference Zagier34].

For positive integers m, we have that

(2.6)

is a weakly holomorphic modular form of weight $3/2$ on $\Gamma _0(4)$ .

Proof of Theorem 1.1.

Emulating Zagier’s proof of the Eichler–Selberg trace formula, we replace $\mathcal {H}^+(\tau )$ in (2.4) with the $g_m(\tau )$ . Namely, we define

By the combinatorial calculation that gave (2.4), we obtain the earlier definition (1.5)

$$ \begin{align*} \mathcal{G}_{m,\nu}(\tau) = -\frac{1}{2} \sum_{n \gg -\infty} \sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) \mathbf{t}_m(4n-r^2) q^n. \end{align*} $$

Furthermore, the theory of Rankin–Cohen brackets in this setting (see [Reference Eichler and Zagier13, Theorem 5.5]) implies that $\mathcal {G}_{m,\nu }(\tau )$ is a weakly holomorphic modular form in $M_{2\nu +2}^!.$

Proof of Theorem 1.2.

The space of weight 2 holomorphic modular forms is $M_2 = \{0\}$ and

$$ \begin{align*}Dj_{-n}(\tau) = n q^n + O(q) \in M_2^!. \end{align*} $$

Therefore, we have

$$ \begin{align*} \mathcal{G}_{m,0}(\tau) +\frac{1}{2} \sum_{-\frac{m^2}{4} \le n < 0} \frac{1}{n} \left(\sum_{r \in \mathbb{Z}} \mathbf{t}_m(4n-r^2)\right) Dj_{-n}(\tau) = 0. \end{align*} $$

The first claim follows from (1.6). By comparing the nth coefficients, the second claim is obtained.

Proof of Theorem 1.3.

For $\nu> 0$ , we note that

(2.7) $$ \begin{align} \mathcal{G}_{m,\nu}(\tau) + \frac{1}{2} \sum_{-\frac{m^2}{4} \le n \le 0} \sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) \mathbf{t}_m(4n-r^2) P_{2\nu+2, n}(\tau) \end{align} $$

is a cusp form. We are merely cancelling the poles at infinity with Poincaré series that satisfy (1.8), and we capture the constant term with Eisenstein series $P_{2\nu +2,0}(\tau )=E_{2\nu +2}(\tau )=1+\cdots .$ For $\nu \in \{1, 2, 3, 4, 6\}$ , the space of cusp forms $S_{2\nu +2}=\{0\}$ is trivial. Therefore, the theorem follows from the identity

(2.8) $$ \begin{align} p_{2\nu+2} \left(r, \frac{r^2-\kappa^2}{4}\right) = \frac{(\kappa - r)^{2\nu+1} + (\kappa + r)^{2\nu+1}}{2^{2\nu+1} \kappa}. \end{align} $$

3 Vector-valued modular forms

The proof of Theorem 1.4 is much more involved than the proofs of Theorems 1.2 and 1.3. Nevertheless, its proof is still based on Theorem 1.1, and the aim is to understand the Fourier expansion of $\mathcal {G}_{m,\nu }(\tau )$ arithmetically in terms of traces of Hecke operators and shifted convolution L-functions. These calculations shall depend on the arithmetic of half-integral weight vector-valued modular forms that transform with respect to the Weil representation. To this end, here we recall essential preliminaries.

3.1 The Weil representation

Let $\mathcal {O}(\mathbb {H})$ be the set of all holomorphic functions $\phi : \mathbb {H} \to \mathbb {C}$ . For $z \in \mathbb {C} \setminus \{0\}$ , we take the principal branch of $z^{1/2}$ as $\arg (z^{1/2}) \in (-\pi /2, \pi /2]$ . For an integer $k \in \mathbb {Z}$ , we put $z^{k/2} = (z^{1/2})^k$ . For $n \in \mathbb {Z}_{\ge 0}$ , we put , and .

The metaplectic group $\operatorname {\mathrm {Mp}}_2(\mathbb {R})$ is a group defined by

where the group operation is

As usual, we have , and for any $\gamma = \bigl (\begin {smallmatrix}a & b \\ c & d\end {smallmatrix}\bigr ) \in \operatorname {\mathrm {SL}}_2(\mathbb {R})$ , we define $j(\gamma , \tau ) = c\tau +d$ and $\widetilde {\gamma } = \left (\bigl (\begin {smallmatrix}a & b \\ c & d\end {smallmatrix}\bigr ), j(\gamma , \tau )^{1/2} \right ) \in \operatorname {\mathrm {Mp}}_2(\mathbb {R})$ . Let $\operatorname {\mathrm {Mp}}_2(\mathbb {Z})$ be the inverse image of $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ under the projection $\operatorname {\mathrm {Mp}}_2(\mathbb {R}) \to \operatorname {\mathrm {SL}}_2(\mathbb {R})$ . As usual, we let and It is well known that $\operatorname {\mathrm {Mp}}_2(\mathbb {Z})$ is generated by $\widetilde {T}$ and $\widetilde {S}$ , (see [Reference Bruinier6, p.16]) and its center is generated by

$$\begin{align*}\widetilde{-I} = \widetilde{S}^2 = (\widetilde{S} \widetilde{T})^3 = \left(\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}, i \right). \end{align*}$$

Moreover, we let , representing the metaplectic stabilizer for the cusp at infinity.

We recall the Weil representation,Footnote 1 the unitary representation $\rho : \operatorname {\mathrm {Mp}}_2(\mathbb {Z}) \to \operatorname {\mathrm {GL}}_2(\mathbb {C})$ defined by

(3.1)

We note that $\rho (\widetilde {-I}) = \rho (\widetilde {S}^2) = -i I$ . We let $\rho ^* : \operatorname {\mathrm {Mp}}_2(\mathbb {Z}) \to \operatorname {\mathrm {GL}}_2(\mathbb {C})$ be the dual representation of $\rho $

We recall an explicit formula for $\rho (\widetilde {\gamma })$ , which is easily derived from work of both Shintani [Reference Shintani29, Proposition 1.6] and Bruinier [Reference Bruinier6, Proposition 1.1], where for odd integers d, we let

(3.2)

Proposition 3.1. For $c \ge 0$ , we have

$$ \begin{align*} \rho(\widetilde{\gamma}) = \begin{cases} \displaystyle{\frac{\epsilon_c}{1+i} \left(\frac{a}{c}\right) \begin{pmatrix}1 & i^{cd} \\ i^{ac} & -i^{(a+d)c}\end{pmatrix}} &\text{if } c \equiv 1\quad \pmod{2},\\ \displaystyle{\epsilon_a^{-1} \left(\frac{c}{a}\right) \begin{pmatrix}0 & i^{ab} \\ 1 & 0\end{pmatrix}} &\text{if } c \equiv 2\quad \pmod{4},\\ \displaystyle{\epsilon_a^{-1} \left(\frac{c}{a}\right) \begin{pmatrix}1 & 0 \\ 0 & i^{ab}\end{pmatrix}} &\text{if } c \equiv 0\quad \pmod{4}. \end{cases} \end{align*} $$

We now give the definition of a vector-valued modular form that transforms under the Weil representation. If $k \in \frac {1}{2} \mathbb {Z}$ and $f: \mathbb {H} \to \mathbb {C}^2$ . For $(\gamma , \phi (\tau )) \in \operatorname {\mathrm {Mp}}_2(\mathbb {Z}),$ then we define the slash operator

We say that $f: \mathbb {H} \to \mathbb {C}^2$ is a weight k (vector-valued) modular form with respect to $\rho $ if

$$\begin{align*}f|_{k,\rho} (\gamma, \phi) = f \end{align*}$$

for every $(\gamma , \phi ) \in \operatorname {\mathrm {Mp}}_2(\mathbb {Z})$ . We define them for $\rho ^*$ in a similar manner.

3.2 Jacobi’s theta functions

For later use, we recall the Jacobi theta functions (for example, see [Reference Eichler and Zagier13, Section 5]) in this context. If we set , where we have

(3.3)

and The specialization $\Theta (\tau , 0)$ is a weight 1/2 vector-valued modular form with respect to $\rho $ , and in general is a (vector-valued) Jacobi form, which for $(\gamma , \phi )\in \operatorname {\mathrm {Mp}}_2(\mathbb {Z}),$ in this case, means that

(3.4)

4 Maass–Poincaré series and traces of singular moduli

The proof of Theorem 1.4 relies on Maass–Poincaré series that transform with respect to the Weil representation. We construct these series following [Reference Bruinier6], and we relate them to traces of singular moduli. The goal of this section, Theorem 4.5, can be immediately derived as a special case of Alfes’ result [Reference Alfes1, Theorem 4.3], which applies the Kudla–Millson theta lift ([Reference Bruinier and Funke7]) to integer weight Poincaré series. However, we will also provide a direct proof that requires minimal advanced prior knowledge below.

4.1 The Whittaker functions

Let $M_{\mu , \nu }(z)$ and $W_{\mu , \nu }(z)$ be the Whittaker functions (for example, see [Reference Whittaker and Watson30, Ch. 16] and [Reference Magnus, Oberhettinger and Soni17, 24]). The next two lemmas are crucial for constructing Maass–Poincaré series.

Lemma 4.1 [Reference Magnus, Oberhettinger and Soni17, 7.2.1], [24, 13.15.19].

For positive integers $n,$ we have

$$\begin{align*}\frac{\mathrm{d}^n}{\mathrm{d} z^n} \left(e^{-z/2} z^{-\nu-1/2} M_{\mu, \nu}(z) \right) = (-1)^n \frac{(\mu + \nu + 1/2)^{\overline{n}}}{(2\nu+1)^{\overline{n}}} e^{-z/2} z^{-\nu - n/2-1/2} M_{\mu+n/2, \nu+n/2}(z). \end{align*}$$

Lemma 4.2 [Reference Magnus, Oberhettinger and Soni17, 7.5.1], [24, 13.23.1].

For $\operatorname {\mathrm {Re}}(\nu + \alpha + 1/2)> 0$ and $2\operatorname {\mathrm {Re}}(z)> \beta > 0$ , we have

$$ \begin{align*} \int_0^\infty e^{-zt} t^{\alpha-1} M_{\mu, \nu}(\beta t) \mathrm{d} t &= \frac{\beta^{\nu+1/2} \Gamma\left(\nu+\alpha+\frac{1}{2}\right)}{\left(z+\frac{\beta}{2}\right)^{\nu+\alpha+1/2}}\cdot {}_2F_1 \left(\nu-\mu+\frac{1}{2}, \nu+\alpha+\frac{1}{2}; 2\nu+1; \frac{2\beta}{\beta+2z}\right), \end{align*} $$

where ${}_2F_1(a,b; c; z)$ is the Gaussian hypergeometric function.

For $n \in \mathbb {Z}$ , $k \in \frac {1}{2} \mathbb {Z}$ , $y> 0$ , and $s \in \mathbb {C}$ , we define the modified Whittaker functions

(4.1)
(4.2)

The special values of these functions at $s = k/2$ play a crucial role in the construction of the Maass–Poincaré series. To this end, for $n < 0$ , we have

(4.3) $$ \begin{align} \mathcal{M}_{k,n} \left(y, \frac{k}{2}\right) &= \Gamma(k)^{-1} e^{-2\pi ny}. \end{align} $$

As for the $\mathcal {W}$ -function, we have

(4.4) $$ \begin{align} \mathcal{W}_{k,n} \left(y, \frac{k}{2}\right) = \begin{cases} \Gamma(k)^{-1} n^{k-1} e^{-2\pi ny} &\text{if } n> 0,\\ 0 &\text{if } n \le 0 \end{cases} \end{align} $$

(see [Reference Magnus, Oberhettinger and Soni17, 7.2.4]). Moreover, we note that, ([Reference Magnus, Oberhettinger and Soni17, 7.6.1], [24, 13.14]),

(4.5) $$ \begin{align} \begin{split} W_{\mu, \nu}(y) &\sim e^{-y/2} y^\mu \quad (y \to \infty),\\ M_{\mu, \nu}(y) &= y^{\nu+1/2} (1+ O(y)) \quad (y \to 0). \end{split} \end{align} $$

4.2 Kloosterman sums

The Fourier expansions of the Maass–Poincaré series require Kloosterman sums, which we recall here. For $k \in \frac {1}{2}\mathbb {Z} \setminus \mathbb {Z}$ , $m, n \in \mathbb {Z}$ , and $c>0$ with $c \equiv 0\ \pmod {4}$ , we define the half-integral weight Kloosterman sum by

(4.6)

where $\overline {d} \in \mathbb {Z}/c\mathbb {Z}$ satisfies that $d \overline {d} \equiv 1\ \pmod {c}$ . The condition $d\ (c)^*$ means that d runs over $d \in \mathbb {Z}/c\mathbb {Z}$ such that $(c,d) = 1$ . We note that the Kloosterman sums satisfy

(4.7) $$ \begin{align} K_{k+2}(m,n,c) = K_k(m,n,c) \quad \text{ and } \quad K_{3/2}(m,n,c) = -i K_{1/2}(-m,-n,c). \end{align} $$

We now relate the Weil representation to such Kloosterman sums. For notational convenience, we let

$$\begin{align*}\rho(\widetilde{\gamma}) = \begin{pmatrix}\rho(\widetilde{\gamma})_{00} & \rho(\widetilde{\gamma})_{01} \\ \rho(\widetilde{\gamma})_{10} & \rho(\widetilde{\gamma})_{11}\end{pmatrix}. \end{align*}$$

Then the following sum formula holds for each entry of $\rho (\widetilde {\gamma })$ .

Proposition 4.3. If $\alpha , \beta \in \{0,1\}$ and m and n satisfy $m \equiv -\alpha\ \pmod {4}$ and $n \equiv -\beta\ \pmod {4},$ then for every positive integer c, we have

$$ \begin{align*} \frac{1}{4} \left(1 + \left(\frac{4}{c}\right) \right) K_{3/2}(m,n,4c)= \sum_{d\ (c)^*} \rho(\widetilde{\gamma})_{\alpha \beta} \mathbf{e}\left(\frac{ma + nd}{4c}\right), \end{align*} $$

where we take any $\gamma = \bigl (\begin {smallmatrix}a & b \\ c & d\end {smallmatrix}\bigr ) \in \operatorname {\mathrm {SL}}_2(\mathbb {Z})$ for which $(c,d)$ forms its bottom row.

Proof. First, we check that the right-hand side is well defined. Let $R_{\alpha \beta }(\gamma )$ denote its summand. It suffices to show that $R_{\alpha \beta }(T^j \gamma T^l) = R_{\alpha \beta }(\gamma )$ holds for any $j, l \in \mathbb {Z}$ . Since $\widetilde {T^j \gamma T^l} = \widetilde {T}^j \widetilde {\gamma } \widetilde {T}^l$ holds, we have

$$\begin{align*}R_{\alpha \beta}(T^j \gamma T^l) = i^{\alpha j + \beta l} \rho(\widetilde{\gamma})_{\alpha \beta} \mathbf{e} \left(\frac{ma+nd}{4c}\right) \mathbf{e} \left(\frac{mj+nl}{4}\right) = R_{\alpha \beta}(\gamma). \end{align*}$$

Next, for each $\gamma = \bigl (\begin {smallmatrix}a & b \\ c & d\end {smallmatrix}\bigr ) \in \operatorname {\mathrm {SL}}_2(\mathbb {Z})$ with $c> 0$ , we prove the refined equation

(4.8) $$ \begin{align} \rho(\widetilde{\gamma})_{\alpha \beta} = \frac{1}{4} \left(1 + \left(\frac{4}{c}\right) \right) \sum_{\substack{\delta\ (4c) \\ \delta \equiv d\ (c) \\ \delta \equiv 1\ (2)}} \left(\frac{c}{\delta}\right) \epsilon_{\delta}^{-1} \mathbf{e} \left(\frac{a - \overline{\delta}}{4c}\right)^\alpha \mathbf{e} \left(\frac{d-\delta}{4c}\right)^\beta, \end{align} $$

where $\overline {\delta }$ is the inverse of $\delta $ in $(\mathbb {Z}/4c\mathbb {Z})^\times $ . This immediately implies the proposition.

To confirm (4.8), let and ( $j = 0,1,2,3$ ). For simplicity, let $\rho "(\gamma )_{\alpha \beta }$ denote the right-hand side of (4.8) and show that $\rho "(\gamma )_{\alpha \beta } = \rho (\widetilde {\gamma })_{\alpha \beta }$ . If $\delta $ is odd, then we can easily check that

$$\begin{align*}\overline{\delta} = \begin{cases} a(1+b_j c) &\text{if } c \equiv 1\quad \pmod{2} \text{ and } a \equiv 1\quad \pmod{2},\\ (a+c)(1+(b_j+d_j)c) &\text{if } c \equiv 1\quad \pmod{2} \text{ and } a \equiv 0\quad \pmod{2},\\ a(1-ab_j cd_j) &\text{if } c \equiv 2\quad \pmod{4},\\ a(1-b_jc) &\text{if } c \equiv 0\quad \pmod{4}. \end{cases} \end{align*}$$

We prove the case where $c \equiv 1\ \pmod {2}$ and $a \equiv 1\ \pmod {2}$ , leaving the others to the reader. We have

$$ \begin{align*} \rho"(\gamma)_{\alpha \beta} &= \frac{1}{2} \sum_{\substack{0 \le j \le 3 \\ d_j \equiv 1\ (2)}} \left(\frac{c}{d_j}\right) \epsilon_{d_j}^{-1} \mathbf{e} \left(\frac{-ab_j}{4}\right)^\alpha \mathbf{e} \left(\frac{-j}{4}\right)^\beta = \frac{i^{-ab \alpha}}{2} \left(\frac{d}{c}\right) \sum_{\substack{0 \le j \le 3 \\ d_j \equiv 1\ (2)}} (-1)^{\frac{(c-1)(d_j-1)}{4}} \epsilon_{d_j}^{-1} i^{-j(\alpha+\beta)}. \end{align*} $$

Since the value of the sum depends only on $c, d\ \pmod {4}$ , a direct calculation yields

$$\begin{align*}\rho"(\gamma)_{\alpha \beta} = \frac{i^{-ab \alpha}}{2} \left(\frac{d}{c}\right) \frac{2\epsilon_c}{1+i} \times \begin{cases} 1 &\text{if } (\alpha, \beta) = (0,0),\\ i^{cd} &\text{if } (\alpha, \beta) = (0,1), (1,0),\\ (-1)^{d-1} &\text{if } (\alpha, \beta) = (1,1). \end{cases} \end{align*}$$

Combining simple calculations with Proposition 3.1, one obtains $\rho (\widetilde {\gamma })_{\alpha \beta }$ .

4.3 The Maass–Poincaré series

Using the two previous subsections, we now construct the Maass–Poincaré series. We let and . Assume that $k \in \frac {1}{2} \mathbb {Z}$ satisfies $2k \equiv 3\ \pmod {4}$ . For $\alpha \in \{0, 1\}$ and $m \equiv -\alpha\ \pmod {4}$ , we define the Maass–Poincaré series of weight k with respect to $\rho ^*$ by

(4.9)

This series converges absolutely and uniformly on compact subsets in $\operatorname {\mathrm {Re}}(s)> 1$ [Reference Bruinier6, p.29], and we note that is invariant under $|_{k,\rho ^*} (\gamma , \phi )$ for any $(\gamma , \phi ) \in \widetilde {\Gamma }_\infty $ as $2k \equiv 3\ \pmod {4}$ .

The Fourier expansions of the functions involve the Bessel functions (see [Reference Magnus, Oberhettinger and Soni17, Ch. 3] and [Reference Whittaker and Watson30, Ch. 17])

Proposition 4.4. For $\operatorname {\mathrm {Re}}(s)> 1$ , we have

where

$$ \begin{align*} b_{m,k}^{(\beta)}(n, s) &= 2\pi i^{-k} \sum_{c> 0} \left(1+\left(\frac{4}{c}\right)\right) \frac{K_{3/2}(m,n,4c)}{4c}\\ &\qquad \qquad \times \begin{cases} \displaystyle{|mn|^{\frac{1-k}{2}} J_{2s-1} \left(\frac{\pi \sqrt{|mn|}}{c}\right)} &\text{if } mn > 0,\\ \displaystyle{|mn|^{\frac{1-k}{2}} I_{2s-1} \left(\frac{\pi \sqrt{|mn|}}{c}\right)} &\text{if } mn < 0,\\ \displaystyle{2^{k-1} \pi^{s+k/2-1} |m+n|^{s-k/2} (4c)^{1-2s}} &\text{if } mn=0, m+n \neq 0,\\ \displaystyle{2^{2k-2} \pi^{k-1} \Gamma(2s) (8c)^{1-2s}} &\text{if } m = n = 0. \end{cases} \end{align*} $$

Proof. Dividing the sum of the Poincaré series into the identity class and the remaining part, we have

Let $H_{k, \rho ^*}^{(\alpha , m)}(\tau , s)$ denote the sum of the second term. By following the exact same argument as in the proof of Theorem 1.9 in Bruinier’s book [Reference Bruinier6], we obtain the Fourier expansion,

$$\begin{align*}H_{k,\rho^*}^{(\alpha, m)}(\tau,s) = \sum_{\beta \in \{0,1\}} \sum_{n \in \mathbb{Z}} \left( \sum_{c> 0} \sum_{d \in (\mathbb{Z}/c\mathbb{Z})^\times} \rho(\widetilde{\gamma})_{\alpha \beta} \mathbf{e}\left(\frac{ma+nd}{4c}\right) I_m(n) \right) \mathbf{e} \left(\frac{nu}{4}\right) \mathfrak{e}_\beta, \end{align*}$$

where $I_m(n)$ is given by

By combining this with Proposition 4.3, we obtain Proposition 4.4.

4.4 Traces of singular moduli

The coefficients of these functions are related to traces of singular moduli, as shown in several previous works (for example, see [Reference Bringmann and Ono5, Reference Bruinier, Jenkins and Ono8, Reference Duke, Imamoḡlu and Tóth12]). To make this precise, we consider weight 3/2 modular forms h on $\Gamma _0(4)$ satisfying

(4.10)

We define for $i \in \{0, 1\}$ , and then we have that

(4.11)

is a weight 3/2 vector-valued modular form with respect to $\rho ^*$ (see [Reference Eichler and Zagier13, Section 5] and [Reference Bringmann, Folsom, Ono and Rolen4, Ch. 2]).

We relate the $g_m(\tau )$ in (2.6) and to the Maass–Poincaré expressions

(4.12)

where $\alpha \equiv n^2\ \pmod {4}$ for each n. To be precise, we have the following theorem.

Theorem 4.5. If m is a nonnegative integer, then we have

$$\begin{align*}\lim_{s \to 3/4} G_m(\tau, s) = \begin{pmatrix}g_{m,0}(\tau) \\ g_{m,1}(\tau)\end{pmatrix}. \end{align*}$$

Remark. We note that the case of $m=0$ was stated by Williams [Reference Williams31, Example 5.1].

Sketch of the Proof. This result is standard, and so we sketch the proof. We first recall facts about Niebur–Poincaré series $F_m(\tau , s)$ (see [Reference Niebur23] or [Reference Duke, Imamoḡlu and Tóth12, Section 4]), which are defined for $\operatorname {\mathrm {Re}}(s)> 1,$ and give alternative expressions for the $j_m(\tau )$ . Specifically, as described in [Reference Duke, Imamoḡlu and Tóth12, (4.10)], it is known that

$$\begin{align*}\mathop{\mathrm{Res}}_{s=1} F_0(\tau, s) = \frac{3}{\pi} \end{align*}$$

and

(4.13) $$ \begin{align} \lim_{s \to 1} F_{-m}(\tau, s) = j_m(\tau) + 24 \sigma_1(m) \quad (m> 0). \end{align} $$

For nonnegative integers m, the trace functions

have a direct connection to the coefficients of the earlier Maass–Poincaré series. Indeed, by combining the result of Duke, Imamoḡlu and Tóth in [Reference Duke, Imamoḡlu and Tóth12, Proposition 4] with our Proposition 4.4, for $\operatorname {\mathrm {Re}}(s)> 1$ , $m \ge 0$ , and $d> 0$ with $d \equiv 0, 3\ \pmod {4}$ , we obtain that

$$\begin{align*}\mathrm{Tr}_d(F_{-m}(\cdot, s)) = \begin{cases} \displaystyle{- d^{1/2} \sum_{n|m} n b_{-n^2, 3/2}^{(\beta)} \left(d, \frac{s}{2} + \frac{1}{4}\right)} &\text{if } m> 0,\\ \displaystyle{-2^{s-2} \pi^{-s/2-1} d^{1/2} \zeta(s) b_{0, 3/2}^{(\beta)} \left(d, \frac{s}{2} + \frac{1}{4}\right)} &\text{if } m = 0. \end{cases} \end{align*}$$

Therefore, (4.13) implies that

(4.14) $$ \begin{align} \mathbf{t}_m(d) = \lim_{s \to 3/4} \begin{cases} \displaystyle{- d^{1/2} \sum_{n|m} n b_{-n^2, 3/2}^{(\beta)} (d, s) + \frac{4d^{1/2}}{\sqrt{\pi}} \sigma_1(m) b_{0, 3/2}^{(\beta)}(d,s)} &\text{if } m> 0,\\ \displaystyle{- \frac{d^{1/2}}{6 \sqrt{\pi}} b_{0, 3/2}^{(\beta)} (d, s)} &\text{if } m = 0. \end{cases} \end{align} $$

By applying (4.3) and (4.4), we thereby conclude the proof of the theorem.

Remark. We note that subtle technicalities arise in the proof of Theorem 4.5, which have been addressed in the aforementioned works but deserve commentary. The $G_m(\tau , s)$ are defined for $\operatorname {\mathrm {Re}}(s)> 1$ , where they enjoy the Fourier series expansion in Proposition 4.4. As we can only be analytically continued up to $\operatorname {\mathrm {Re}}(s)> 3/4$ , care is required when letting $s \to 3/4$ . In fact, the Fourier coefficients $b_{-m^2, 3/2}^{(\beta )}(-n^2, s)$ have a simple pole at $s = 3/4$ , which cancels out with a zero from , (for example, see [Reference Duke, Imamoḡlu and Tóth12, Lemma 3]). This issue is addressed by examining the growth of the Fourier coefficients of $G_m(\tau , s)$ , including $\mathrm {Tr}_d(F_{-m}(\cdot , s))$ , as $d \to \infty $ and the behavior as $s \to 3/4$ . We refer the reader to [Reference Bruinier, Jenkins and Ono8, Reference Duke11, Reference Duke, Imamoḡlu and Tóth12] for these details.

5 Proof of Theorem 1.4

We have constructed the Poincaré series $G_m(\tau , s)$ whose Fourier coefficients give the traces of singular moduli. We turn to the problem of providing the Hecke decomposition of $\mathcal {G}_{m,\nu }(\tau )$ . Specifically, we compute the Petersson inner product $\langle \mathcal {G}_{m,\nu }, f \rangle $ with a normalized Hecke eigenform f of $S_{2\nu +2}$ . We first recall useful facts about Jacobi forms to relate the Rankin–Cohen brackets to these Poincaré series.

5.1 Jacobi forms and the modified heat operator

For a function $\varphi : \mathbb {H} \times \mathbb {C} \to \mathbb {C}$ , $\gamma \in \operatorname {\mathrm {SL}}_2(\mathbb {Z})$ , and positive integers $k, m \in \mathbb {Z}_{>0}$ , we define the slash operator

and the weighted heat operator

where . Then, we have

(5.1) $$ \begin{align} L_{k,m} (\varphi|_{k,m} \gamma) = (L_{k,m} \varphi)|_{k+2,m} \gamma \end{align} $$

for any $\gamma \in \operatorname {\mathrm {SL}}_2(\mathbb {Z})$ (see [Reference Eichler and Zagier13, (11) in Section 3]). For simplicity, we put .

Lemma 5.1. For a Poincaré series defined by

$$\begin{align*}G(\tau) = \sum_{(\gamma, \phi) \in \widetilde{\Gamma}_\infty \backslash \operatorname{\mathrm{Mp}}_2(\mathbb{Z})} \begin{pmatrix}\psi_0(\tau) \\ \psi_1(\tau)\end{pmatrix} \bigg|_{3/2, \rho^*} (\gamma, \phi), \end{align*}$$

with test functions $\psi _0, \psi _1: \mathbb {H} \to \mathbb {C}$ , we have

$$\begin{align*}{}^t \Theta(\tau, z) G(\tau) = \sum_{\gamma \in \Gamma_\infty \backslash \Gamma} (\theta_0(\tau, z) \psi_0(\tau) + \theta_1(\tau, z) \psi_1(\tau)) |_{2,1} \gamma. \end{align*}$$

Proof. By a direct calculation with (3.4), we have

$$ \begin{align*} {}^t \Theta(\tau, z) G(\tau) = \sum_{(\gamma, \phi) \in \widetilde{\Gamma}_\infty \backslash \operatorname{\mathrm{Mp}}_2(\mathbb{Z})} \phi(\tau)^{-4} \mathbf{e} \left(\frac{-cz^2}{c\tau+d}\right) {}^t \Theta\left(\gamma \tau, \frac{z}{c\tau+d}\right) {}^t \rho((\gamma, \phi))^{-1} \rho^*((\gamma, \phi))^{-1} \begin{pmatrix}\psi_0(\gamma\tau) \\ \psi_1(\gamma \tau)\end{pmatrix}. \end{align*} $$

Since ${}^t \rho ((\gamma , \phi ))^{-1} \rho ^*((\gamma , \phi ))^{-1} = I$ and $\phi (\tau )^{-4} = (c\tau +d)^{-2}$ , we obtain the result.

We require the following proposition for the $p_k(r,n)$ in the Eichler–Selberg trace formula.

Proposition 5.2. For $\nu , l \in \mathbb {Z}_{\ge 0}$ and $r \in \mathbb {Z}$ , we define the differential operator by

(5.2)

Then, for a function $: \mathbb {H} \to \mathbb {C}$ , we have the Taylor expansion

$$\begin{align*}L_{2\nu} \circ \cdots \circ L_2 f(\tau)(\zeta^r + \zeta^{-r}) = 2 \sum_{l=0}^\infty p_{2\nu+2}(r,D,l) f(\tau) \frac{(2\pi irz)^{2l}}{(2l)!}. \end{align*}$$

In particular, letting $p_k(r,n)$ as in (1.4), we have that $p_{2\nu +2}(r,D,0) = p_{2\nu +2}(r,D)$ and

$$\begin{align*}\lim_{z \to 0} L_{2\nu} \circ \cdots \circ L_2 f(\tau)(\zeta^r + \zeta^{-r}) = 2 p_{2\nu+2}(r,D) f(\tau). \end{align*}$$

Proof. We check that the Taylor coefficients of $L_{2\nu } \circ \cdots \circ L_2 f(\tau ) (\zeta ^r + \zeta ^{-r})$ and the sequence (5.2) satisfy the same recursion. The claim is clear for $\nu = 0$ . For $\nu> 0$ , let

Then $S_{\nu , l, j}$ satisfies the recursion

$$\begin{align*}S_{\nu, l, j} = -D S_{\nu-1, l, j-1} + \frac{r^2}{4} \left(1 + \frac{4\nu-1}{2l+1}\right) S_{\nu-1, l+1, j}, \end{align*}$$

for $\nu \ge 1$ and $0 \le j \le \nu $ with $S_{\nu , l, -1} = 0$ , which implies that

$$\begin{align*}p_{2\nu+2}(r,D,l) = -D p_{2\nu}(r,D,l) + \frac{r^2}{4} \left(1 + \frac{4\nu-1}{2l+1}\right) p_{2\nu} (r,D,l+1). \end{align*}$$

One can check that the Taylor coefficients also satisfy this recursion.

We use this proposition to understand the combinatorial properties of the Rankin–Cohen bracket operators, which is a slight generalization of [Reference Eichler and Zagier13, Theorem 5.5].

Proposition 5.3. Let $\nu \ge 0$ be a nonnegative integer. For a modular form h of weight $3/2$ on $\Gamma _0(4)$ of the form (4.10), we have

Proof. By definition, we have

A direct calculation implies that

and

$$ \begin{align*} \sum_{\substack{r, s \ge 0\\ r+s = \nu}} (-1)^r \frac{\Gamma(3/2+\nu) \Gamma(1/2+\nu)}{s! \Gamma(3/2+r) r! \Gamma(1/2+s)} m^{2s} (4D-m^2)^r = \binom{2\nu}{\nu} p_{2\nu+2}(m,D). \end{align*} $$

The last equation immediately follows from Proposition 5.2.

For each $n \ge 0$ and $\nu \ge 0$ , we define

(5.3)

Combining Theorem 4.5 and Lemma 5.3, for $m\geq 1,$ we obtain the following key expressions:

(5.4) $$ \begin{align} \mathcal{G}_{m,\nu}(\tau) = -\frac{1}{2\binom{2\nu}{\nu}} \cdot [g_m, \theta]_\nu |U_4 = -\frac{1}{2} \lim_{s \to 3/4} \left( -\frac{\sqrt{\pi}}{2} \sum_{n \mid m} n \Phi_{n, \nu}(\tau, s) + 2\sigma_1(m) \Phi_{0,\nu}(\tau, s)\right). \end{align} $$

The order of limits of s and z is interchanged, which is justified by the Remark at the end of Section 4.4.

5.2 The Selberg–Poincaré series

To prove Theorem 1.4 using (5.4), we must calculate $\Phi _{n,\nu }(\tau , s)$ and $\langle \Phi _{n, \nu }(\cdot , s), f\rangle $ at $s = 3/4$ for Hecke eigenforms f. To this end, we use Selberg’s generalization [Reference Selberg27] of the Poincaré series in (1.7). For integers $k\ge 2$ and $m\in \mathbb {Z},$ they are defined by

(5.5)

This series converges absolutely and uniformly on compact subsets for $\operatorname {\mathrm {Re}}(s)> 1-k/2$ and admits meromorphic continuation. In particular, it is known that $P_{k,m}(\tau , s)$ is holomorphic at $s = 1-k/2$ . This fact follows from comparing it with the Maass–Poincaré series defined by

Indeed, from (4.5), we have

Thus, for $\operatorname {\mathrm {Re}}(s)> -k/2$ , the poles of these two types of Poincaré series agree. However, the Fourier expansion of the Maass–Poincaré series (see [Reference Jeon, Kang and Kim15, Theorem 3.2]) and the Weil bound for the Kloosterman sums imply its holomorphy at $s = 1-k/2$ .

The next lemma describes the Petersson inner product of cusp forms with these series.

Lemma 5.4. For $f \in S_k$ and $m> 0$ , we have

Proof. It follows from the classical unfolding argument (see [Reference Bringmann, Folsom, Ono and Rolen4, Ch. 10.1], for instance).

5.3 The case of $n=0$

Here, we calculate $\langle \Phi _{0, \nu }(\cdot , s), f\rangle $ at $s = 3/4$ for a normalized Hecke eigenform f. To this end, we decompose $\Phi _{0,\nu }(\tau ,s)$ in terms of the Selberg–Poincaré series.

Proposition 5.5. We have that

$$\begin{align*}\Phi_{0,\nu}(\tau, s) = 4^{-s+3/4} \sum_{0 \le l \le \nu} \frac{(s-3/4)^{\underline{l}}}{(4\pi)^l} \binom{2\nu+1}{2l+1} \sum_{r \in \mathbb{Z}} r^{2\nu-2l} P_{2\nu+2, r^2} \left(\tau, s-\frac{3}{4}-l\right). \end{align*}$$

Proof. By applying (5.1), Lemma 5.1 and Proposition 5.2,

The summand is calculated as

Then the claim follows from the Leibniz rule, where , and the fact that

$$\begin{align*}\sum_{l \le j \le \nu} (-1)^j 2^{2(\nu-j)} \binom{2\nu-j}{j} \binom{j}{l} = (-1)^l \binom{2\nu+1}{2l+1}. \end{align*}$$

The next result provides a formula for the Petersson norm of a cusp form f.

Theorem 5.6. For a normalized Hecke eigenform $f \in S_{2\nu +2}$ , we have

$$\begin{align*}\lim_{s \to 3/4} \langle \Phi_{0,\nu} (\cdot, s), f \rangle = 24 \|f\|^2. \end{align*}$$

Proof. First, we note that the Fourier coefficients of a normalized Hecke eigenform are real. By Lemma 5.4 and Proposition 5.5, we find that

$$ \begin{align*} \langle \Phi_{0,\nu}(\cdot, s), f \rangle &= 4^{-s+3/4} \sum_{0 \le l \le \nu} \frac{(s-3/4)^{\underline{l}}}{(4\pi)^l} \frac{\Gamma(2\nu+s+1/4-l)}{(4\pi)^{2\nu+s+1/4-l}} \binom{2\nu+1}{2l+1} \cdot 2 \sum_{r =1}^\infty \frac{c_f(r^2)}{r^{2s+2\nu+1/2}}. \end{align*} $$

As in [Reference Cohen and Strömberg10, Lemma 11.12.6], let

for $f \in S_{2\nu +2}$ . Then, it is known that $B(f,s)$ admits the meromorphic continuation to the whole $\mathbb {C}$ -plane, and $L(\mathrm {Sym}^2(f), s)$ has no poles (see [Reference Cohen and Strömberg10, Remark 11.12.8]). In particular, $B(f, 2s+2\nu +1/2)$ has no pole at $s = 3/4$ . Therefore, by [Reference Cohen and Strömberg10, Corollary 11.12.7], we have

$$ \begin{align*} \lim_{s \to 3/4} \langle \Phi_{0,\nu}(\cdot, s), f\rangle &= \frac{\Gamma(2\nu+1)}{(4\pi)^{2\nu+1}} (2\nu+1) 2B(f, 2\nu+2)\\ &= \frac{2(2\nu+1)!}{(4\pi)^{2\nu+1}} \frac{6}{\pi^2} \frac{\pi}{2} \frac{(4\pi)^{2\nu+2}}{(2\nu+1)!} \langle f, f \rangle\\ &=24 \|f\|^2.\\[-47pt] \end{align*} $$

5.4 The cases of $n> 0$

We turn to the case of positive $n.$ Again, we first decompose $\Phi _{n,\nu }(\tau ,s).$

Proposition 5.7. For $n> 0$ , we have

$$ \begin{align*} \Phi_{n, \nu}(\tau, s) &= \frac{1}{\Gamma(2s)} \sum_{\substack{r \in \mathbb{Z} \\ r \equiv n\ (2)}} \sum_{\substack{i_1, i_2 \ge 0 \\ i_1 + i_2 \le \nu}} \frac{(-1)^{i_1}}{i_1! i_2!} \left(\frac{n^2}{4} \right)^{i_1+i_2} Q_{\nu, i_1+i_2} (n,r) \frac{(s-3/4)^{\underline{i_1}} (s-3/4)^{\overline{i_2}}}{(2s)^{\overline{i_2}}}\widetilde{P}_{n,r}^{i_1, i_2} (\tau, s), \end{align*} $$

where we let

Proof. Arguing as above, by applying (5.1), Lemma 5.1 and Proposition 5.2, we obtain

The summand is calculated as

Similar to the case of $n=0$ , direct calculation utilizing yields

For the second term, by Lemma 4.1, we find that

The claim follows by combining these results.

We split the sum defining $\Phi _{n, \nu }(\tau , s)$ into $\Phi _{n, \nu }^+(\tau , s)$ and $\Phi _{n, \nu }^-(\tau , s),$ based on the inequalities $r^2> n^2$ or $r^2 \le n^2.$ We consider them as $s \to 3/4$ . By (4.5), the summand of the Poincaré series $\widetilde {P}_{n,r}^{i_1, i_2} (\tau , s)$ satisfies

as . Therefore, for $\operatorname {\mathrm {Re}}(s)> -\nu +i_1 + 3/4$ , the Poincaré series is holomorphic (in s). In particular, $\widetilde {P}_{n,r}^{i_1, i_2} (\tau , s)$ is holomorphic at $s = 3/4$ for $0 \le i_1 < \nu $ . Regarding the case of $i_1 = \nu $ , by a similar argument as in Section 5.2 – that is, by comparing it with the Selberg–Poincaré series or the Maass–Poincaré series – we see that it is also holomorphic at $s=3/4$ . Therefore, we have

$$ \begin{align*} \lim_{s \to 3/4} \Phi_{n, \nu}^-(\tau, s) &= \frac{1}{\Gamma(3/2)} \sum_{\substack{r \in \mathbb{Z} \\ r \equiv n\ (2)\\r^2 \le n^2}} Q_{\nu,0} (n,r) \widetilde{P}_{n,r}^{0,0}(\tau, 3/4). \end{align*} $$

Since $Q_{\nu ,0}(n,r) = p_{2\nu +2}(r, (r^2-n^2)/4)$ and $\widetilde {P}_{n,r}^{0,0}(\tau , 3/4) = P_{2\nu +2, \frac {r^2-n^2}{4}}(\tau )$ , by (2.8), we have

(5.6) $$ \begin{align} \lim_{s \to 3/4} \Phi_{n, \nu}^-(\tau, s) = \frac{4}{n \sqrt{\pi}} \sum_{0 < r \le n} r^{2\nu+1} P_{2\nu+2, -r(n-r)}(\tau). \end{align} $$

As a counterpart to Theorem 5.6, the Petersson inner product of $\Phi _{n, \nu }^+(\tau , s)$ with a Hecke eigenform is expressed in terms of the symmetrized shifted convolution L-functions.

Theorem 5.8. For a normalized Hecke eigenform $f \in S_{2\nu +2}$ , we have

$$ \begin{align*} \lim_{s \to 3/4} \langle \Phi_{n,\nu}^+(\cdot, s), f \rangle = \frac{4}{n \sqrt{\pi}} \frac{\Gamma (2\nu + 1)}{(4\pi)^{2\nu + 1}} \sum_{d \mid n} \mu(d) \widehat{L}(f, n/d; 2\nu+1). \end{align*} $$

Proof. By Proposition 5.7, we have

$$ \begin{align*} &\langle \Phi_{n, \nu}^+(\cdot, s), f \rangle\\ &= \frac{1}{\Gamma(2s)} \sum_{\substack{r \in \mathbb{Z} \\ r \equiv n\ (2) \\ r^2> n^2}} \sum_{\substack{i_1, i_2 \ge 0 \\ i_1 + i_2 \le \nu}} \frac{(-1)^{i_1}}{i_1! i_2!} \left(\frac{n^2}{4} \right)^{i_1+i_2} Q_{\nu, i_1+i_2} (n,r) \frac{(s-3/4)^{\underline{i_1}} (s-3/4)^{\overline{i_2}}}{(2s)^{\overline{i_2}}} \langle \widetilde{P}_{n,r}^{i_1, i_2} (\cdot, s), f \rangle. \end{align*} $$

The unfolding argument, combined with Lemma 4.2, gives

By changing variables $r = 2m+n$ for $r> n$ and $r = -2m-n$ for $r < -n$ , we have

$$ \begin{align*} &\langle \Phi_{n,\nu}^+(\cdot, s), f\rangle\\ &= \frac{2}{\Gamma(2s)} \sum_{\substack{i_1, i_2 \ge 0 \\ i_1 + i_2 \le \nu}} \frac{(-1)^{i_1}}{i_1! i_2!} \left(\frac{n^2}{4} \right)^{i_1+i_2} \frac{(s-3/4)^{\underline{i_1}} (s-3/4)^{\overline{i_2}}}{(2s)^{\overline{i_2}}} (\pi n^2)^{s -\frac{3}{4}-i_1} \Gamma \left(s + 2\nu + \frac{1}{4} - i_1 \right)\\ &\times \sum_{m=1}^\infty \frac{Q_{\nu, i_1+i_2} (n,2m+n) c_f (m(m+n))}{(\pi (2m+n)^2)^{s + 2\nu + \frac{1}{4} - i_1}} {}_2 F_1 \left(s+\frac{3}{4}, s + 2\nu + \frac{1}{4} - i_1; 2s+i_2; \frac{n^2}{(2m+n)^2}\right), \end{align*} $$

where we note that $Q_{\nu ,i}(n,-r) = Q_{\nu ,i}(n,r)$ holds. For a normalized Hecke eigenform $f \in S_{2\nu +2}$ , since

$$\begin{align*}c_f(m(m+n)) = \sum_{d \mid (m, m+n)} \mu(d) d^{2\nu+1} c_f\left(\frac{m}{d}\right) c_f\left(\frac{m+n}{d}\right), \end{align*}$$

the last sum becomes

$$ \begin{align*} &\sum_{d \mid n} \mu(d) d^{2\nu+1} \sum_{m=1}^\infty \frac{Q_{\nu, i_1+i_2} (n,2dm+n) c_f(m) c_f(m+n/d)}{(\pi (2dm+n)^2)^{s + 2\nu + \frac{1}{4} - i_1}}\\ &\quad \times {}_2 F_1 \left(s+\frac{3}{4}, s + 2\nu + \frac{1}{4} - i_1; 2s+i_2; \frac{n^2}{(2dm+n)^2}\right).\end{align*} $$

Then, this Dirichlet series is holomorphic at $s = 3/4$ . Indeed, since $Q_{\nu , i_1+i_2} (n,2dm+n)$ has degree $2(\nu -i_1-i_2)$ in m, it suffices to show that

$$\begin{align*}\sum_{m=1}^\infty \frac{c_f(m) c_f(m+n/d)}{m^{2(s+\nu+1/4+i_2)}} \end{align*}$$

(conditionally) converges at $s = 3/4$ . This can be seen by partial summation using the estimate

$$\begin{align*}\sum_{1 \le m \le x} c_f(m) c_f(m+n/d) \ll x^{2\nu+2-\delta}, \end{align*}$$

with some $\delta> 0$ , (see [Reference Blomer2, Corollary 1.4]). Therefore, all terms corresponding to nonzero $(i_1, i_2)$ vanish as $s \to 3/4$ , and we obtain

$$ \begin{align*} \lim_{s \to 3/4} \langle \Phi_{n,\nu}^+(\cdot, s), f\rangle &= \frac{4}{\sqrt{\pi}} \Gamma(2\nu+1) \sum_{d \mid n} \mu(d) d^{2\nu+1} \\ &\quad \times \sum_{m=1}^\infty \frac{Q_{\nu, 0} (n,2dm+n) c_f(m) c_f(m+n/d)}{(\pi (2dm+n)^2)^{2\nu + 1}} {}_2 F_1 \left(\frac{3}{2}, 2\nu + 1; \frac{3}{2}; \frac{n^2}{(2dm+n)^2}\right). \end{align*} $$

Since we have

$$\begin{align*}\frac{1}{r^{2(2\nu+1)}} {}_2 F_1 \left(\frac{3}{2}, 2\nu + 1; \frac{3}{2}; \frac{n^2}{r^2}\right) = \frac{1}{(r^2-n^2)^{2\nu+1}} \end{align*}$$

and $Q_{\nu ,0}(n,r) = p_{2\nu +2}(r, (r^2-n^2)/4)$ with (2.8) again, the proof is complete as

$$ \begin{align*} \lim_{s \to 3/4} \langle \Phi_{n,\nu}^+(\cdot, s), f\rangle &= \frac{4}{n \sqrt{\pi}} \frac{\Gamma(2\nu+1)}{(4\pi)^{2\nu + 1}} \sum_{d \mid n} \mu(d) \sum_{m=1}^\infty c_f(m) c_f(m+n/d) \left(\frac{1}{m^{2\nu+1}} - \frac{1}{(m+n/d)^{2\nu+1}}\right). \end{align*} $$

5.5 Proof of Theorem 1.4

We apply the results from the two previous subsections. For $m> 0$ and $\nu \ge 0$ , let

As stated in (5.4), we have

$$\begin{align*}\lim_{s \to 3/4} \Phi(\tau, s) = \mathcal{G}_{m,\nu}(\tau). \end{align*}$$

However, from (5.6), the minus part

For the plus part, by Theorem 5.6 and Theorem 5.8 and the Möbius inversion formula, we have

$$ \begin{align*} \lim_{s \to 3/4} \langle \Phi^+(\cdot, s), f \rangle &= \sum_{n \mid m} \frac{\Gamma (2\nu + 1)}{(4\pi)^{2\nu + 1}} \sum_{d \mid n} \mu(d) \widehat{L}(f, n/d; 2\nu+1) - 24\sigma_1(m) \|f\|^2\\ &= \frac{\Gamma (2\nu + 1)}{(4\pi)^{2\nu + 1}} \widehat{L}(f, m; 2\nu+1) - 24 \sigma_1(m) \|f\|^2. \end{align*} $$

Combining these facts, we are pleased to obtain the conclusion of the theorem

$$ \begin{align*} \lim_{s \to 3/4} \Phi(\tau, s) &= \sum_{n \mid m} \sum_{0 < r \le n} r^{2\nu+1} P_{2\nu+2, -r(n-r)}(\tau) - \sum_{j=1}^{d_{2\nu+2}} \left(24 \sigma_1(m) - \frac{\Gamma (2\nu + 1)}{(4\pi)^{2\nu + 1}} \frac{\widehat{L}(f, m; 2\nu+1)}{\|f_j\|^2} \right) f_j. \end{align*} $$

Acknowledgements

The authors thank Masanobu Kaneko and Gyucheol Shin for comments that improved this paper.

Competing interest

The authors have no competing interest to declare.

Funding statement

This work was supported by the MEXT Initiative for Realizing Diversity in the Research Environment through Kyushu University’s Diversity and Super Global Training Program for Female and Young Faculty (SENTAN-Q). The second author was supported by JSPS KAKENHI (JP20K14292, JP21K18141 and JP24K16901). The third author thanks the Thomas Jefferson Fund and grants from the NSF (DMS-2002265 and DMS-2055118).

Footnotes

1 For more general settings, see Bruinier [Reference Bruinier6, Ch. 1] and Borcherds [Reference Borcherds3]. As mentioned in the Bruinier’s book, this representation is essentially the Weil representation associated with the discriminant group $L'/L \cong \mathbb {Z}/2\mathbb {Z}$ , where L is a certain lattice with a quadratic form. For specific settings, refer to [Reference Bruinier and Ono9, Section 2].

References

Alfes, C., ‘Formulas for the coefficients of half-integral weight harmonic Maaß forms’, Math. Z. 277(3–4), (2014), 769795.CrossRefGoogle Scholar
Blomer, V., ‘Shifted convolution sums and subconvexity bounds for automorphic $L$ -functions’, Int. Math. Res. Not. (73) (2004), 39053926.CrossRefGoogle Scholar
Borcherds, R. E., ‘Automorphic forms with singularities on Grassmannians’, Invent. Math. 132(3) (1998), 491562.CrossRefGoogle Scholar
Bringmann, K., Folsom, A., Ono, K. and Rolen, L.Harmonic Maass Forms and Mock Modular Forms: Theory and Applications (American Mathematical Society Colloquium Publications) vol. 64 (American Mathematical Society, Providence, RI, 2017).CrossRefGoogle Scholar
Bringmann, K. and Ono, K., ‘Arithmetic properties of coefficients of half-integral weight Maass-Poincaré series’, Math. Ann. 337(3) (2007), 591612.CrossRefGoogle Scholar
Bruinier, J. H., Borcherds Products on $O\left(2,l\right)$ and Chern Classes of Heegner Divisors (Lecture Notes in Mathematics) vol. 1780 (Springer-Verlag, Berlin, 2002).Google Scholar
Bruinier, J. H. and Funke, J., ‘On two geometric theta lifts’, Duke Math. J. 125(1) (2004), 4590.CrossRefGoogle Scholar
Bruinier, J. H., Jenkins, P. and Ono, K., ‘Hilbert class polynomials and traces of singular moduli’, Math. Ann. 334(2) (2006), 373393.CrossRefGoogle Scholar
Bruinier, J. H. and Ono, K., ‘Heegner divisors, $L$ -functions and harmonic weak Maass forms’, Ann. of Math. (2) 172(3) (2010), 21352181.CrossRefGoogle Scholar
Cohen, H. and Strömberg, F.Modular Forms (Graduate Studies in Mathematics) vol. 179 (American Mathematical Society, Providence, RI, 2017). A classical approach.CrossRefGoogle Scholar
Duke, W., ‘Modular functions and the uniform distribution of CM points’, Math. Ann. 334(2) (2006), 241252.CrossRefGoogle Scholar
Duke, W., Imamoḡlu, Ö., and Tóth, Á., ‘Cycle integrals of the $j$ -function and mock modular forms’, Ann. of Math. (2) 173(2) (2011), 947981.CrossRefGoogle Scholar
Eichler, M. and Zagier, D., The Theory of Jacobi Forms (Progress in Mathematics) vol. 55 (Birkhäuser Boston, Inc., Boston, MA, 1985).CrossRefGoogle Scholar
Hirzebruch, F. and Zagier, D., ‘Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus’, Invent. Math. 36 (1976), 57113.CrossRefGoogle Scholar
Jeon, D., Kang, S.-Y. and Kim, C. H., ‘Weak Maass-Poincaré series and weight 3/2 mock modular forms’, J. Number Theory 133(8) (2013), 25672587.CrossRefGoogle Scholar
Kaneko, M., ‘The Fourier coefficients and the singular moduli of the elliptic modular function $j\left(\tau \right)$ ’, Mem. Fac. Engrg. Design Kyoto Inst. Tech. Ser. Sci. Tech. 44 (1996), 15.Google Scholar
Magnus, W., Oberhettinger, F. and Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics (Die Grundlehren der mathematischen Wissenschaften) Band 52, enlarged edn. (Springer-Verlag New York, Inc., New York, 1966).CrossRefGoogle Scholar
Matsusaka, T., ‘The Fourier coefficients of the McKay-Thompson series and the traces of CM values’, Res. Number Theory 3 (2017), Paper No. 23, 16.CrossRefGoogle Scholar
Matsusaka, T. and Osanai, R., ‘Arithmetic formulas for the Fourier coefficients of Hauptmoduln of level 2, 3, and 5’, Proc. Amer. Math. Soc. 145(4) (2017), 13831392.CrossRefGoogle Scholar
Mertens, M. H.,‘Mock modular forms and class number relations’, Res. Math. Sci. 1 (2014), Art. 6.CrossRefGoogle Scholar
Mertens, M. H., ‘Mock modular forms and class numbers of quadratic forms’, PhD thesis, Universität zu Köln, 2014.CrossRefGoogle Scholar
Mertens, M. H. and Ono, K., ‘Special values of shifted convolution Dirichlet series’, Mathematika 62(1) (2016), 4766.CrossRefGoogle Scholar
Niebur, D., ‘A class of nonanalytic automorphic functions’, Nagoya Math. J. 52 (1973), 133145.CrossRefGoogle Scholar
NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov.Google Scholar
Ohta, K., ‘Formulas for the Fourier coefficients of some genus zero modular functions’, Kyushu J. Math. 63(1) (2009), 115.CrossRefGoogle Scholar
Ono, K. and Saad, H., ‘Some Eichler-Selberg trace formulas’, Hardy-Ramanujan J. 45 (2022), 94107.Google Scholar
Selberg, A., ‘On the estimation of Fourier coefficients of modular forms’, in Proc. Sympos. Pure Math., Vol. VIII (Amer. Math. Soc., Providence, RI, 1965), 115.Google Scholar
Serre, J.-P., A Course in Arithmetic (Graduate Texts in Mathematics) no. 7 (Springer-Verlag, New York-Heidelberg, 1973). Translated from the French.CrossRefGoogle Scholar
Shintani, T., ‘On construction of holomorphic cusp forms of half integral weight’, Nagoya Math. J. 58 (1975), 83126.CrossRefGoogle Scholar
Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, fourth edn. (Cambridge University Press, New York, 1962).Google Scholar
Williams, B., ‘Vector-valued Eisenstein series of small weight’, Int. J. Number Theory 15(2) (2019), 265287.CrossRefGoogle Scholar
Zagier, D., ‘Modular forms of one variable’, Notes based on a course given in Utrecht, Spring 1991, available in https://people.mpim-bonn.mpg.de/zagier/files/tex/UtrechtLectures/UtBook.pdf.Google Scholar
Zagier, D., ‘Nombres de classes et formes modulaires de poids 3/2’, C. R. Acad. Sci. Paris Sér. A-B 281(21) (1975), Ai, A883A886.Google Scholar
Zagier, D., ‘Traces of singular moduli’, in Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998) (Int. Press Lect. Ser.) vol. 3, (Int. Press, Somerville, MA, 2002), 211244.Google Scholar