Article contents
Quasimaps and stable pairs
Published online by Cambridge University Press: 12 April 2021
Abstract
We prove an equivalence between the Bryan-Steinberg theory of $\pi $-stable pairs on $Y = \mathcal {A}_{m-1} \times \mathbb {C}$ and the theory of quasimaps to $X = \text{Hilb}(\mathcal {A}_{m-1})$, in the form of an equality of K-theoretic equivariant vertices. In particular, the combinatorics of both vertices are described explicitly via box counting. Then we apply the equivalence to study the implications for sheaf-counting theories on Y arising from 3D mirror symmetry for quasimaps to X, including the Donaldson-Thomas crepant resolution conjecture.
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 7
- Cited by