Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:02:19.986Z Has data issue: false hasContentIssue false

A rainbow blow-up lemma for almost optimally bounded edge-colourings

Published online by Cambridge University Press:  30 October 2020

Stefan Ehard
Affiliation:
Institut für Optimierung und Operations Research, Universität Ulm, Germany; stefan.ehard@uni-ulm.de
Stefan Glock
Affiliation:
Institute for Theoretical Studies, ETH Zürich, Switzerland; stefan.glock@eth-its.ethz.ch
Felix Joos
Affiliation:
Institut für Informatik, Universität Heidelberg, Germany; joos@informatik.uni-heidelberg.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlós, Sárközy, and Szemerédi that applies to almost optimally bounded colourings. A corollary of this is that there exists a rainbow copy of any bounded-degree spanning subgraph H in a quasirandom host graph G, assuming that the edge-colouring of G fulfills a boundedness condition that is asymptotically best possible.

This has many applications beyond rainbow colourings: for example, to graph decompositions, orthogonal double covers, and graph labellings.

Type
Discrete Mathematics
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

References

Adamaszek, A., Allen, P., Grosu, C., and Hladký, J., ‘Almost all trees are almost graceful’, Random Structures Algorithms 56 (2020), 948987.CrossRefGoogle Scholar
Albert, M., Frieze, A., and Reed, B., ‘Multicoloured Hamilton cycles’, Electron. J. Combin. 2 (1995), Art. 10, 13 pages.CrossRefGoogle Scholar
Allen, P., Böttcher, J., Clemens, D., and Taraz, A., ‘Perfectly packing graphs with bounded degeneracy and many leaves’, arXiv:1906.11558 (2019).Google Scholar
Allen, P., Böttcher, J., Hàn, H., Kohayakawa, Y., and Person, Y., ‘Blow-up lemmas for sparse graphs’, arXiv:1612.00622 (2016).Google Scholar
Allen, P., Böttcher, J., Hladký, J., and Piguet, D., ‘Packing degenerate graphs’, Adv. Math. 354 (2019), 106739.CrossRefGoogle Scholar
Böttcher, J., Kohayakawa, Y., and Procacci, A., ‘Properly coloured copies and rainbow copies of large graphs with small maximum degree’, Random Structures Algorithms 40 (2012), 425436.CrossRefGoogle Scholar
Böttcher, J., Kohayakawa, Y., Taraz, A., and Würfl, A., ‘An extension of the blow-up lemma to arrangeable graphs’, SIAM J. Discrete Math. 29 (2015), 9621001.CrossRefGoogle Scholar
Böttcher, J., Schacht, M., and Taraz, A., ‘Proof of the bandwidth conjecture of Bollobás and Komlós’, Math. Ann. 343 (2009), 175205.CrossRefGoogle Scholar
Coulson, M. and Perarnau, G., ‘Rainbow matchings in Dirac bipartite graphs’, Random Structures Algorithms 55 (2019), 271289.CrossRefGoogle Scholar
Csaba, B., ‘On the Bollobás-Eldridge conjecture for bipartite graphs’, Combin. Probab. Comput. 16 (2007), 661691.CrossRefGoogle Scholar
Drmota, M. and A. Lladó’, ‘Almost every tree with $m$ edges decomposes ${K}_{2m,2m}$ ’, Combin. Probab. Comput. 23 (2014), 5065.CrossRefGoogle Scholar
Duke, R. A., Lefmann, H., and Rödl, V., ‘A fast approximation algorithm for computing the frequencies of subgraphs in a given graph’, SIAM J. Comput. 24 (1995), 598620.CrossRefGoogle Scholar
Ehard, S., Glock, S., and Joos, F., ‘Pseudorandom hypergraph matchings’, Combin. Probab. Comput. (to appear).Google Scholar
Ehard, S. and Joos, F., ‘A short proof of the blow-up lemma for approximate decompositions’, arXiv:2001.03506 (2020).Google Scholar
Erdős, P., Nešetřil, J., and Rödl, V., ‘On some problems related to partitions of edges of a graph’, in Graphs and other combinatorial topics , Teubner-Texte Math. 59 (Teubner, 1983), pp. 5463.Google Scholar
Gallian, J. A., ‘A dynamic survey of graph labeling’, Electron. J. Combin. 5 (1998), Dynamic Survey 6, 43.Google Scholar
Glock, S. and Joos, F., ‘A rainbow blow-up lemma’, Random Structures Algorithms 56 (2020), 10311069.CrossRefGoogle Scholar
Glock, S., Joos, F., Kim, J., Kühn, D., and Osthus, D., ‘Resolution of the Oberwolfach problem’, arXiv:1806.04644 (2018).Google Scholar
Glock, S., Kühn, D., Lo, A., and Osthus, D., ‘The existence of designs via iterative absorption: hypergraph $F$ -designs for arbitrary  $F$ ’, Mem. Amer. Math. Soc. (to appear).Google Scholar
Graham, R. L. and Sloane, N. J. A., ‘On additive bases and harmonious graphs’, SIAM J. Algebraic Discrete Methods 1 (1980), 382404.CrossRefGoogle Scholar
Gronau, H.-D. O. F., Mullin, R. C., and Rosa, A., ‘Orthogonal double covers of complete graphs by trees’, Graphs Combin. 13 (1997), 251262.CrossRefGoogle Scholar
Hajnal, A. and Szemerédi, E., ‘Proof of a conjecture of Erdős’, in: Combinatorial Theory and its Applications II, eds. Erdős, P., Rényi, A., and Sós, V.T., (North Holland, 1970), pp. 601623.Google Scholar
Janson, S., Łuczak, T., and Ruciński, A., ‘Random graphs’, Wiley-Intersci. Ser. Discrete Math. Optim. (Wiley-Interscience, 2000).Google Scholar
Joos, F., Kim, J., Kühn, D., and Osthus, D., ‘Optimal packings of bounded degree trees’, J. Eur. Math. Soc. 21 (2019), 35733647.CrossRefGoogle Scholar
Keevash, P., ‘A hypergraph blow-up lemma’, Random Structures Algorithms 39 (2011), 275376.Google Scholar
Keevash, P., ‘The existence of designs’, arXiv:1401.3665 (2014).Google Scholar
Keevash, P., ‘The existence of designs II’, arXiv:1802.05900 (2018).Google Scholar
Kim, J., Kühn, D., Kupavskii, A., and Osthus, D., ‘Rainbow structures in locally bounded colourings of graphs’, Random Structures Algorithms 56 (2020), 11711204.CrossRefGoogle Scholar
Kim, J., Kühn, D., Osthus, D., and Tyomkyn, M., ‘A blow-up lemma for approximate decompositions’, Trans. Amer. Math. Soc. 371 (2019), 46554742.CrossRefGoogle Scholar
Komlós, J., Sárközy, G. N., and Szemerédi, E., ‘Blow-up lemma’, Combinatorica 17 (1997), 109123.CrossRefGoogle Scholar
Komlós, J., Sárközy, G. N., and Szemerédi, E., ‘On the Pósa-Seymour conjecture’, J. Graph Theory 29 (1998), 167176.3.0.CO;2-O>CrossRefGoogle Scholar
Komlós, J., Sárközy, G. N., and Szemerédi, E., ‘Proof of the Seymour conjecture for large graphs’, Ann. Comb. 2 (1998), 4360.CrossRefGoogle Scholar
Komlós, J., Sárközy, G. N., and Szemerédi, E., ‘Proof of the Alon-Yuster conjecture’, Discrete Math. 235 (2001), 255269.CrossRefGoogle Scholar
Kotzig, A., ‘On certain vertex-valuations of finite graphs’, Utilitas Math. 4 (1973), 261290.Google Scholar
Kühn, D. and Osthus, D., ‘The minimum degree threshold for perfect graph packings’, Combinatorica 29 (2009), 65107.CrossRefGoogle Scholar
Kühn, D. and Osthus, D., ‘Hamilton decompositions of regular expanders: A proof of Kelly’s conjecture for large tournaments’, Adv. Math. 237 (2013), 62146.CrossRefGoogle Scholar
McDiarmid, C., ‘On the method of bounded differences’, in Surveys in Combinatorics (Norwich, 1989), London Math. Soc. Lecture Note Ser. 141 (Cambridge Univ. Press, 1989), pp. 148188.Google Scholar
Montgomery, R., Pokrovskiy, A., and Sudakov, B., ‘Decompositions into spanning rainbow structures’, Proc. Lond. Math. Soc. 119 (2019), 899959.CrossRefGoogle Scholar
Montgomery, R., Pokrovskiy, A., and Sudakov, B., ‘A proof of Ringel’s Conjecture’, arXiv:2001.02665 (2020).Google Scholar
Montgomery, R., Pokrovskiy, A., and Sudakov, B., ‘Embedding rainbow trees with applications to graph labelling and decomposition’, J. Eur. Math. Soc. 22 (2020), 31013132.Google Scholar
Rödl, V., ‘On a packing and covering problem’, European J. Combin. 6 (1985), 6978.CrossRefGoogle Scholar
Rödl, V. and Ruciński, A., ‘Perfect matchings in $\epsilon$ -regular graphs and the blow-up lemma’, Combinatorica 19 (1999), 437452.Google Scholar
Rosa, A., ‘On certain valuations of the vertices of a graph’, in Theory of Graphs (Internat. Sympos., Rome, 1966) (Gordon and Breach, New York; Dunod, Paris, 1967), pp. 349355.Google Scholar
ak, A., ‘Harmonious order of graphs’, Discrete Math. 309 (2009), 60556064.Google Scholar