Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:27:56.468Z Has data issue: false hasContentIssue false

RC-positive metrics on rationally connected manifolds

Published online by Cambridge University Press:  16 November 2020

Xiaokui Yang*
Affiliation:
Department of Mathematics and Yau Mathematical Sciences Center, Tsinghua University, Beijing100084, China; E-mail: xkyang@mail.tsinghua.edu.cn

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric $\omega $ such that $(T_X,\omega )$ is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on $T_X$ .

Type
Algebraic and Complex Geometry
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

References

Alvarez, A., Chaturvedi, A., and Heier, G., ‘Optimal pinching for the holomorphic sectional curvature of Hitchin’s metrics on Hirzebruch surfaces’, Contemp. Math., 133142 (2015).CrossRefGoogle Scholar
Andreotti, A. and Grauert, H., Théorème de finitude pour la cohomologie des espaces complexes . Bull. Soc. Math. France 90 (1962), 193259.CrossRefGoogle Scholar
Alvarez, A., Heier, G., and Zheng, F.-Y., ‘On projectivized vector bundles and positive holomorphic sectional curvature’, Proc. Amer. Math. Soc. 146 (2018), 28772882.CrossRefGoogle Scholar
Brown, M.-V., ‘Big $q$ -ample line bundles’, Compos. Math. 148(3) (2012), 790798.CrossRefGoogle Scholar
Brunebarbe, Y. and Campana, F., ‘Fundamental group and pluri-differentials on compact Kähler manifolds’, Mosc. Math. J. 16(4) (2016), 651658.CrossRefGoogle Scholar
Boucksom, S., Demailly, J.-P., Paun, M., and Peternell, P., ‘The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension’, J. Algebraic Geom. 22 (2013), 201248.CrossRefGoogle Scholar
Campana, F., Connexité rationnelle des variétés de Fano, Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), no. 5, 539545.CrossRefGoogle Scholar
Campana, F., ‘Slope rational connectedness for orbifolds’, arXiv:1607.07829.Google Scholar
Campana, F.,Demailly, J.-P., and Peternell, T., ‘Rationally connected manifolds and semipositivity of the Ricci curvature’, in Recent advances in Algebraic Geometry, LMS Lecture Notes Series 417, (2014), 7191.CrossRefGoogle Scholar
Campana, F. and Flenner, H., ‘A characterization of ample vector bundles on a curve’, Math. Ann. 287 (1990), no. 4, 571575.CrossRefGoogle Scholar
Campana, F. and Paun, M., ‘Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds’, Compositio Math. 152 (2016) 23502370.CrossRefGoogle Scholar
Cao, J.-Y., ‘Höring, A.. A decomposition theorem for projective manifolds with nef anticanonical bundle’, J. Algebraic Geom. 28 (2019), no. 3, 567597.CrossRefGoogle Scholar
Chaturvedi, A. and Heier, G., ‘Hermitian metrics of positive holomorphic sectional curvature on fibrations’, Math. Z. 295(1–2) (2020), 349364.CrossRefGoogle Scholar
Demailly, J.-P., ‘A converse to the Andreotti-Grauert theorem’, Ann. Fac. Sci. Toulouse Math . (6) 20 (2011), Fascicule Special, 123135.CrossRefGoogle Scholar
Demailly, J.-P., private communication.Google Scholar
Demailly, J.-P., Peternell, T., and Schneider, M., ‘Holomorphic line bundles with partially vanishing cohomology’, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), 165198, Israel Math. Conf. Proc., 9 (Bar-Ilan Univ., 1996).Google Scholar
Demailly, J.-P., Peternell, T., and Schneider, M., ‘Compact Kähler manifolds with hermitian semipositive anticanonical bundle,’ Compositio Math. 101 (1996), 217224.Google Scholar
Demailly, J.-P., Peternell, T., and Schneider, M., ‘Holomorphic line bundles with partially vanishing cohomology’, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) , 165198, Israel Math. Conf. Proc., 9 (Bar-Ilan Univ., 1996).Google Scholar
Graber, T., Harris, J., and Starr, J., ‘Families of rationally connected varieties’, J. Amer. Math. Soc. 16 (2003), no. 1, 5767.CrossRefGoogle Scholar
Greb, D. and Küronya, A., ‘Partial positivity: geometry and cohomology of $q$ -ample line bundles’, in Recent advances in algebraic geometry, 207239, London Math. Soc. Lecture Note Ser. 417 (Cambridge Univ. Press, Cambridge, 2015).CrossRefGoogle Scholar
Heier, G. and Wong, B., ‘On projective Kähler manifolds of partially positive curvature and rational connectedness’, arXiv:1509.02149.Google Scholar
Huybrechts, D., Complex geometry. An introduction, Universitext (Springer-Verlag, Berlin, 2005).Google Scholar
Kodaira, K., ‘On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)’, Ann. of Math. (2) 60, (1954). 2848.CrossRefGoogle Scholar
Kollár, J., Rational curves on algebraic varieties (Springer-Verlag, Berlin, 1996).CrossRefGoogle Scholar
Kollár, J., Miyaoka, Y., and Mori, S., ‘Rationally connected varieties’, J. Algebraic Geom. 1 (1992), no. 3, 429448.Google Scholar
Küronya, A.,‘Positivity on subvarieties and vanishing of higher cohomology’, Ann. Inst. Fourier 63 (2013) 17171737.CrossRefGoogle Scholar
Lamari, A., ‘Courants kähleriens et surfaces compactes’, Ann. Inst. Fourier 49 (1999), 263285.CrossRefGoogle Scholar
Lazic, V. and Peternell, T., ‘Rationally connected varieties on a conjecture of Mumford’, Sci. China Math. 60 (2017), 10191028.CrossRefGoogle Scholar
Liu, G., ‘Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds’, Duke Math. J. 165 (2016), no. 15, 28992919.CrossRefGoogle Scholar
Liu, K.-F. and Yang, X.-K., ‘Ricci curvatures on Hermitian manifolds’, Trans. Amer. Math. Soc. 369 (2017), 51575196.CrossRefGoogle Scholar
Matsumura, S., ‘Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces’, Ann. Inst. Fourier 63 (2013), 21992221.CrossRefGoogle Scholar
Matsumura, S., ‘On the image of MRC fibrations of projective manifolds with semi-positive holomorphic sectional curvature’, arXiv:1801.09081.Google Scholar
Matsumura, S., ‘On projective manifolds with semi-positive holomorphic sectional curvature’, arXiv:1811.04182.Google Scholar
Mok, N., ‘The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature’, J. Differential Geom. 27 (1988), no. 2, 179214.CrossRefGoogle Scholar
Mori, S., ‘Projective manifolds with ample tangent bundles’, Ann. Math. 110(2) (1979), 593606.CrossRefGoogle Scholar
Ni, L., ‘Vanishing theorems on complete Kähler manifolds and their applications’, J. Differential Geom. 50 (1998), no. 1, 89122.CrossRefGoogle Scholar
Ni, L., ‘Liouville theorems and a Schwarz Lemma for holomorphic mappings between Kähler manifolds’, arXiv:1807.02674.Google Scholar
Ni, L. and Zheng, F.-Y., ‘Comparison and vanishing theorems for Kähler manifolds’, arXiv:1802.08732.Google Scholar
Ni, L. and Zheng, F.-Y., ‘Positivity and Kodaira embedding theorem’, arXiv:1804.09696.Google Scholar
Ottem, J.-C., ‘Ample subvarieties and $q$ -ample divisors’, Adv. Math. 229 (2012), no. 5, 28682887.CrossRefGoogle Scholar
Peternell, T., ‘Kodaira dimension of subvarieties II’, Int. J. Math. 17 (2006), 619631.CrossRefGoogle Scholar
Peternell, T., ‘Varieties with generically nef tangent bundles’, J. Eur. Math. Soc. 14 (2012), no. 2, 571603.CrossRefGoogle Scholar
Siu, Y.-T. and Yau, S.-T., ‘Compact Kähler manifolds of positive bisectional curvature’, Invent. Math. 59(2) (1980), 189204.CrossRefGoogle Scholar
Totaro, B., ‘Line bundles with partially vanishing cohomology’, J. Eur. Math. Soc. 15 (2013), 731754.CrossRefGoogle Scholar
Yang, B. and Zheng, F.-Y., ‘Hirzebruch manifolds and positive holomorphic sectional curvature’, arXiv:1611.06571v2.Google Scholar
Yang, X.-K., ‘Hermitian manifolds with semi-positive holomorphic sectional curvature’, Math. Res. Lett. 23 (2016), no.3, 939952.CrossRefGoogle Scholar
Yang, X.-K., ‘Scalar curvature on compact complex manifolds’, Trans. Amer. Math. Soc. 371 (2019), no. 3, 20732087.CrossRefGoogle Scholar
Yang, X.-K., ‘A partial converse to the Andreotti-Grauert theorem’, Compos. Math. 155 (2019), no. 1, 8999.CrossRefGoogle Scholar
Yang, X.-K., ‘RC-positivity, rational connectedness and Yau’s conjecture’, Camb. J. Math. 6 (2018), 183212.CrossRefGoogle Scholar
Yang, X.-K., ‘RC-positivity, vanishing theorems and rigidity of holomorphic maps’, arXiv:1807.02601, to appear in J. Inst. Math. Jussieu.Google Scholar
Yang, X.-K., ‘RC-positivity and the generalized energy density I: Rigidity’, arXiv:1810.03276.Google Scholar
Yang, X.-K., ‘Rigidity theorems on complete Kähler manifolds with RC-positive curvature’, in preparation.Google Scholar
Yau, S.-T., ‘On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I’, Comm. Pure Appl. Math. 31 (1978), 339411.CrossRefGoogle Scholar
Yau, S.-T., ‘A general Schwarz lemma for Kähler manifolds’, Amer. J. Math.100 (1978), no. 1, 197203.CrossRefGoogle Scholar
Yau, S.-T., section, problem, ‘Seminar on Differential Geometry’, Ann. of Math Stud. 102 (1982), 669706.Google Scholar