Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T13:51:32.590Z Has data issue: false hasContentIssue false

In vivo kinetics of β-glucosidase towards glucovanillin and related phenolic glucosides in heat-treated vanilla pod (Vanilla planifolia, Orchidaceae)

Published online by Cambridge University Press:  29 March 2010

Jean-Marc Brillouet*
Affiliation:
CIRAD, Persyst, UMR Qualisud, TA B-95 / 16, F-34398, Montpellier Cedex 5, France INRA, UMR 1083, « Sciences pour l’Œnologie », Univ. Montpellier I, F-34000, Montpellier Cedex, France
Éric Odoux
Affiliation:
CIRAD, Persyst, UMR Qualisud, TA B-95 / 16, F-34398, Montpellier Cedex 5, France
*
* Correspondence and reprints
Get access

Abstract

Introduction. The traditional curing of vanilla pods includes “killing” and sweating steps when pods are exposed to heat (35–65 ℃) for various lengths of time. Although it is known that liberation of vanillin and other phenolics from their non-aromatic glucosides is due to the action of an endogenous β-glucosidase, its in vivo kinetics remained unknown. Materials and methods. Mature green vanilla pods were pretreated for 2 h at 50 ℃, 55 ℃ and 60 ℃, then stored for 118 days at 27 ℃. Phenolic glucosides and their aglycons were extracted at regular intervals during the storage period and analyzed by HPLC. Results and discussion. All phenolic β-glucosides were slowly hydrolyzed during the storage period with production of vanillin, p-hydroxybenzaldehyde, vanillic acid, and other unknown aglycons. Most of the β-glucosidase was heat-denatured by the pretreatment, and analysis of its kinetic parameters showed that it adopts, in vivo, an allosteric mode of functioning with a lower affinity for glucovanillin than in vitro, where it behaves as a Michaelian enzyme. Conclusion. Extensive research is needed to confirm the allosteric mechanism of the vanilla β-glucosidase in vivo.

Type
Original article
Copyright
© 2010 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cameron K.M., Recent advances in the systematic biology of vanilla and related orchids (Orchidaceae: subfamily Vanilloideae), in: Proc. Vanilla, First Int. Cong., Princeton, USA, Carol Stream, Allured Publ. Corp., USA, 2005, pp. 89–93.
Havkin-Frenkel, D., French, J.C., Pak, F. Frenkel, C., Inside vanilla: Vanilla planifolia’s botany, curing options and future market prospects, Perfum. Flavour. 30 (2005) 3655.Google Scholar
Odoux, E., Brillouet, J.-M., Anatomy, histochemistry and biochemistry of glucovanillin, oleoresin and mucilage accumulation sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): a comprehensive and critical reexamination, Fruits 64 (2009) 221241. CrossRefGoogle Scholar
Odoux, E., Escoute, J., Verdeil, J.-L. Brillouet, J.-M., Localization of β-glucosidase activity and glucovanillin in vanilla bean (Vanilla planifolia Andrews), Ann. Bot. 92 (2003) 437444.CrossRefGoogle Scholar
Odoux, E., Chauwin, A. Brillouet, J.-M., Purification and characterization of vanilla bean (Vanilla planifolia Andrews) β-D-glucosidase, J. Agric. Food Chem. 51 (2003) 31683173.CrossRefGoogle ScholarPubMed
Kanisawa, T Kanisawa, T., Flavor development in vanilla beans, Kouryou 180 (1993) 113123.Google Scholar
Arana, F.E Arana, F.E., Action of a β-glucosidase in the curing of vanilla, Food Res. 288 (1943) 343351.CrossRefGoogle Scholar
Odoux, E Odoux, E., Changes in vanillin and glucovanillin concentrations during the various stages of the process traditionally used for curing Vanilla fragrans in Réunion, Fruits 55 (2000) 119125.Google Scholar
Dignum, M.J.W., Kerler, J. Verpoorte, R., Vanilla curing under laboratory conditions, Food Chem. 79 (2002) 165171.CrossRefGoogle Scholar
Dignum, M.J.W., van der Heijden, R., Kerler, J., Winkel, C. Verpoorte, R., Identification of glucosides in green beans of Vanilla planifolia Andrews and kinetics of vanilla β-glucosidase, Food Chem. 85 (2004) 199205.CrossRefGoogle Scholar
Odoux, E., Escoute, J. Verdeil, J.-L., The relation between glucovanillin, β-glucosidase activity and cellular compartmentation during the senescence, freezing and traditional curing of vanilla beans, Ann. Appl. Biol. 149 (2006) 4352.CrossRefGoogle Scholar
Márquez, O. Waliszewski, K.N., The effect of thermal treatment on β-glucosidase inactivation in vanilla bean (Vanilla planifolia Andrews), Int. J. Food Sci. Technol. 43 (2008) 19931999.CrossRefGoogle Scholar
Roux P., Études morphologiques et anatomiques dans le genre Vanilla, in: Bouriquet G. (Ed.), Le vanillier et la vanille dans le monde, Lechevalier, Paris, France, 1954, pp. 44–92.
French J.C., Development of vanilla-bearing placental trichomes, in: Proc. Vanilla, First Int. Cong., Princeton, USA, Carol Stream, Allured Publ. Corp., USA, 2005, pp. 71–77.
Krishnakumar, V., Bindumol, G.P., Potty, S.N. Govindaraju, C., Processing of vanilla (Vanilla planifolia Andrews) beans – Influence of storing fresh beans, killing temperature and duration of killing on quality parameters, J. Spices Aromat. Crops 16 (2007) 3137.Google Scholar
Hanum, T Hanum, T., Changes in vanillin and activity of β-glucosidase and oxidases during post harvest processing of vanilla beans (Vanilla planifolia), Bull. Teknol. Ind. Pagan 8 (1997) 4652.Google Scholar
Márquez, O., Waliszewski, K.N. Oliart, R.M., Pardio V.T. Purification and characterization of cell-wall bound peroxidase from vanilla bean, Lebens. Wiss. u-Technol. 41 (2008) 13721379.CrossRefGoogle Scholar
Waliszewski, K., Márquez, O. Pardio, V.T., Quantification and characterization of polyphenol oxidase from vanilla bean, Food Chem. 117 (2009) 196203.CrossRefGoogle Scholar
Kanisawa T., Tokoro K., Kawahara S., Flavour development in the beans of Vanilla planifolia, in: Kurihara K., Suzuki N., Ogawa H. (Eds.), Olfaction taste XI, Proc. Int. Symp., Springer, Tokyo, Japan, 1994, pp. 268–270.
Perez Silva A., Contribution à l’étude de la genèse des composés d’arôme au cours du procédé mexicain de transformation de la vanille (Vanilla planifolia Jackson), PhD Thesis, Univ. Montpellier II, France, 2006.
Yonetani, T., Park, S., Tsuneshige, A., Imai, K. Kanaori, K., Global allostery model of hemoglobin – Modulation of O2 affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors, J. Biol. Chem. 277 (2002) 3450834520.CrossRefGoogle Scholar
Perez-Silva, A., Odoux, E., Brat, P., Ribeyre, F., Rodriguez-Jimenes, G., Robles-Olvera, V., Garcia-Alvarado, M.A. Günata, Z., GC-MS and GC-olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans, Food Chem. 99 (2006) 728735.CrossRefGoogle Scholar
Roberts, J.K.M., Ray, P.M., Wade-Jardetzky, N. Jardetzky, O., Estimation of cytoplasmic and vacuolar pH in higher plants by 31P NMR, Nat. 283 (1980) 870872.CrossRefGoogle Scholar
Mariezcurrena, M.D., Zavaleta, H.A., Waliszewski, K.N. Sanchez, V., The effect of killing conditions on the structural changes in vanilla (Vanilla planifolia Andrews) pods during the curing process, Int. J. Food Sci. Technol. 43 (2008) 14521457.CrossRefGoogle Scholar
Ranadive A.S., Szkutnica K., Guerrera J.G., Frenkel C., Vanillin biosynthesis in vanilla beans, in: Proc. IX Int. Cong. Ess. Oils, Singapore, 1983, pp. 147–154.