Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T14:13:17.988Z Has data issue: false hasContentIssue false

Effect of temperature and storage on açaí (Euterpe oleracea) fruit water uptake: simulation of fruit transportation and pre-processing

Published online by Cambridge University Press:  19 September 2007

José Dalton Cruz Pessoa
Affiliation:
 Embrapa Instrumentação Agropecuária, São Carlos-SP, r. XV de Novembro 1452, São Carlos, São Paulo, Brazil, 13.560-970
Paula Vanessa da Silva e Silva
Affiliation:
 Univ. Federal do Pará, Belém-PA, r. Augusto Côrrea 01, Belém, Pará, Brazil, 66075-110
Get access

Abstract

Introduction. Açaí is a common palm in the Amazon River basin, from which a much-appreciated drink is prepared in the North of Brazil. Despite the strong increase in the drink market, some basic questions about the fruit postharvest physiology have not been properly studied. Our paper presents results about the fruit water absorption at different temperatures and times of storage, which may help the development of more efficient procedures for fruit transport and processing. Materials and methods. The experiments began approximately 3 h after harvest of fruits collected early in the morning. In a first experiment, to evaluate the effect of temperature on water absorption, fruits were submitted to five treatments: 0 °C, 6 °C, 12 °C, 26 °C and 39 °C. Each treatment was applied to 50 fruits, with four repetitions. Fruits from each lot were put into a beaker with water at the temperature of the selected treatment. Lots were weighed before immersion and every 10 min up to 60 min. The fruit relative increase in mass (dMasserel) was calculated according to experiment time. In a second experiment, to evaluate the effect of storage, fruits collected at the same spot were immediately stored in the lab at 10 °C under relative air humidity of 81% to 87%. After (5, 6 and 7) days of storage, the dMasserel curves were determined. Results and discussion. Between 0 °C and 26 °C, the absorption reaches an asymptote after 30 min, and at 39 °C, the absorption continues to increase for a longer period. The maximum (dMasserel) regarding the temperature was fitted by a parabole, with a minimum at 13 °C. Fruits stored at 10 °C presented an increase in the absorption rate after the fifth day. Conclusion. Our data suggest that: (i) water absorption is minimum at 13 °C; (ii) the imbibition rate is temperature-related, and (iii) fruit stored at 10 °C, and relative humidity 81% to 87%, increases its water absorption rate at the end of the shelf-life time (5th day).

Type
Research Article
Copyright
© CIRAD, EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murrieta, R.S.S., Dufour, D.L., Siqueira, A.D., Food consumption and subsistence in three Caboclo populations on Marajó Island, Amazonia, Brazil, Hum. Ecol. 27 (1999) 455475. CrossRef
Freckleton, R.P., Matos, D.M.S., Bovi, M.L.A., Watkinson, A.R., Predicting the impacts of harvesting using structured population models: the importance of density-dependence and timing of harvest of a tropical palm tree, J. Appl. Ecol. 40 (2003) 846858. CrossRef
Nogueira, O.L., Regeneração e crescimento vegetativo de açaizeiros (Euterpe oleracea) em área de Várzea do estuário Amazônico, Rev. Bras. Frutic. 22 (2000) 323328.
Nogueira, O.L., Conceição, H.E.O. da, Análise de crescimento de açaizeiros em áreas de Várzea do estuário Amazônico, Pesqui. Agropecu. Bras. 35 (2000) 21672173. CrossRef
Paula, J.E. de, Anatomia de Euterpe oleracea Mart. (palmae da Amazônia), Acta Amaz. 5 (1975) 265278. CrossRef
Tavares, D.G.G., Costa, O.A., Composição e valor nutritivo dos alimentos brasileiros, Ver. Soc. Bras. Quím. 5 (1936) 103153.
Lubrano, C., Robin, J.R., Khaiat, A., Fatty acid, sterol and tocopherol composition of oil from the fruit mesocarp of six palm species in French Guiana, Oleagineux 49 (2) (1994) 5965.
Lubrano, C., Robin, J.R., Étude des composés majeurs d'huiles de pulpe de fruits de six espèces de palmiers de Guyane, Acta Bot. Gallica 144 (1997) 495499. CrossRef
Rogez H., Açaí: preparo, composição e melhoramento da conservação, EDUFPA, Belém, Brazil, 2000.
Pozo-Insfran, D. del, Percival, S.S., Talcottt, S.T., Açaí (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells, J. Agric. Food Chem. 54 (2006) 12221229. CrossRef
Coïsson, J.D., Travaglia, F., Piana, G., Capasso, M., Arlorio, M., Euterpe oleracea juice as a functional pigment for yogurt, Food Res. Int. 38 (2005) 893897. CrossRef
Córdova-Fraga, T., Araujo, D.B. de, Sanchez, T.A., Elias, J.R.J., Carneiro, A.A.O., Brandt-Oliveira, R., Sosa, M., Baffa, O., Euterpe oleracea (Açaí) as an alternative oral contrast agent in MRI of the gastrointestinal system: preliminary results, Mag. Reson. Imaging 22 (2004) 389393. CrossRef
Nazaré R.F.R. de, Barroso R.F.F., Emmi D.T., Rocha P.O. da, Composição evidenciadora de placas bacteriana a base de corantes naturais, Embrapa & UFPA, Patent BR PI0202465-9, EUA PI10/173,844, 19 jun. 2002.
Santana A.C. de, Dinâmica espacial da produção rural do Estado do Pará: referências para o desenvolvimento sustentável, UFRA (Sér. Acad., 02), Belém, Brasil, 2006.
Hiraoka, M., Land use changes in the Amazon estuary, Global Environ. Chang. 5 (4) (1995) 323336. CrossRef
Toaiari, s.d.a., yuyama l.k.o., aguiar j.p.l., souza r.f.s., Biodisponibilidade de ferro do acai (Euterpe oleracea Mart.) e da farinha de mandioca fortificada com ferro em ratos, Rev. Nutr. 18 (2005) 291299. CrossRef
Rowell r.m., han j.s., rowell j.s., Characterization and factors affecting fiber properties. In: Frollini E., Leão A., Capparelli Mattoso L.H.C. (Eds.), Natural polymers and agrofibers based composites: preparation, properties and applications, UNESP,. São Carlos, Brazil, 2000.
Bewley J.D., Black M., Seeds, physiology of development and germination, 2nd ed., Plenum Press, New York, USA, 1994.
Brett C., Waldron K., Physiology and biochemistry of plant cell walls, 2nd ed., Chapman & Hall, London, UK, 1996.
Calbo, A.G., Pessoa, J.D.C., A plant growth reanalysis. An extension of Lockhart’s equations to multicellular plants, Rev. Bras. Fisiol. Veg. 6 (1994) 8389.
Pessoa, J.D.C., Calbo, A.G., Apoplasm hydrostatic pressure on growth of cylindrical cells, Braz. J. Plant Physiol. 16 (2004) 1724. CrossRef
Calbo, A.G., Nery, A.A., Compression induced intercellular shaping for some geometric cellular lattices, Braz. Arch. Biol. Technol. 44 (2001) 4148. CrossRef
Wills R., McGlasson B., Graham D., Joyce D., Postharvest: an introduction to the physiology and handling of fruit, vegetables and ornamentals, 4th ed., CAB Int., Wallingford, UK, 1998.