Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T16:16:29.529Z Has data issue: false hasContentIssue false

No-till banana planting on crop residue mulch: effect on soil quality and crop functioning

Published online by Cambridge University Press:  29 March 2010

Get access

Abstract

Introduction. In the French West Indies, farmers generally consider that periodical soil tillage is necessary to increase soil porosity and maintain high yield. However, in the non-tilled perennial banana plantations of the highlands, the soil exhibits better physical and biological properties than in the conventional banana plantations. To determine if tillage before banana planting is necessary for proper banana crop functioning and to assess the effect of tillage on soil quality, banana planting after conventional tillage was compared with no-till banana planting on crop residue mulch on an experimental plot. Materials and methods. Soil quality was assessed through indicators such as porosity, organic status, microbial biomass and structure of nematode communities. Crop functioning was assessed through plant growth, root distribution, and soil water and nitrogen availability. Results. We found that tillage reduced soil microbial biomass and the number of nematode functional guilds. Tillage had only a short-term effect on soil porosity and did not allow deeper extension of the root system. Although soil organic nitrogen mineralization was higher with conventional tillage, banana nitrogen nutrition was not better, probably because the high nitrogen fertilization offset the variations in availability of nitrogen from organic origin. We found that banana growth was better with no-till treatment. This could be explained by less drying out of soil due to the crop residue mulch left on the soil surface with no-till treatment. Conclusion. Relative to conventional tillage, no-till banana planting improved soil quality and crop performance.

Type
Original article
Copyright
© 2010 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lal., R., Reicosky, D.C. Hanson, J.D., Evolution of the plow over 10  000 years and the rationale for no-till farming, Soil Tillage Res. 93 (2007) 112.CrossRefGoogle Scholar
Lal, R., Griffin, M., Apt, J., Lave, L, Morgan, M.G., Managing Soil Carbon, Science 304 (5669) (2004) 393.CrossRefGoogle ScholarPubMed
Caneil, J. Bodet, J.M., Simplification du travail du sol et rendement des cultures, Colloq. INRA 65 (1991) 6382.Google Scholar
Germon, J.C., Taureau, J.C. Thomas, J.M., Effets des méthodes simplifiées de travail du sol sur les transformations de l’azote et leurs conséquences sur le lessivage des nitrates, Colloq. INRA 65 (1991) 125154.Google Scholar
Franzluebbers A.J., Tillage and residue management effect on soil organic matter. Effect of tillage on plant growth, in: Magdoff F., Ray R.W. (Eds.), Soil organic matter in sustainable agriculture, CRC Press, Boca Raton, USA, 2004.
Bockus, W.W. Shroyer, J.P., The impact of reduced tillage on soilborne plant pathogen, Annu. Rev. Phytopathol. 36 (1998) 485500.CrossRefGoogle Scholar
Govaerts, B., Fuentes, M., Mezzalama, M., Nicol, J.M., Deckers, J., Etchevers, J.D., Figueroa-Sandoval, B. Sayre, K.D., Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements, Soil Tillage Res. 94 (2007) 209219.CrossRefGoogle Scholar
Sturz, A.V., Carter, M.R., Johnston, H.W., A review of plant disease, pathogen interaction and microbial antagonism under conservation tillage in temperate humid agriculture, Soil Tillage Res. 41 (1997) 169189.CrossRefGoogle Scholar
Peigné, J., Ball, B.C., Roger-Estrade, J. Davis, C., Is conservation tillage suitable for organic farming? A review, Soil Use Manag. 23 (2007) 129144.CrossRefGoogle Scholar
Okada, H., Harada, H., Effects of tillage and fertilizer on nematode communities in a Japanese soybean field, Appl. Soil Ecol. (2007) 35 582598.CrossRefGoogle Scholar
Brmez, M., Ivezic, M. Raspudic, E., Effect of mechanical disturbance on nematode communities in arable land, Helminthologia 43 (2) (2006) 117121.CrossRefGoogle Scholar
Chan, K.Y., An overview of some tillage impacts on earthworm population abundance and diversity – implications for functioning in soils, Soil Tillage Res. 57 (2001) 179191.CrossRefGoogle Scholar
Alvarez, C.R. Alvarez, R., Short-term effects of tillage system on active soil microbial biomass, Biol. Fertil. Soil 31 (2000) 157161.CrossRefGoogle Scholar
Khamsouk B., Impact de la culture bananière sur l’environnement. Influence des systèmes de cultures bananiers sur l’érosion, le bilan hydrique et les pertes en nutriments sur un sol volcanique de Martinique, ENSA Montp., Thesis, Montp., France, 2001, 214 p.
Dorel, M., Lombard, K. Oliver, R., Azote minéralisable et statut organique des andosols de Guadeloupe. Influence du milieu et des pratiques culturales, Etude Gest. Sols 12 (2005) 267280.Google Scholar
Dorel, M., Roger-Estrade, J., Manichon, H. Delvaux, B., Porosity and soil water properties of Caribbean volcanic ash soils, Soil Use Manag. 16 (2000) 133140.CrossRefGoogle Scholar
Clermont-Dauphin, C., Cabidoche, Y.-M. Meynard, J.-M., Effects of intensive monocropping of bananas on properties of volcanic soils in the uplands of the French West Indies, Soil Use Manag. 20 (2004) 105113.CrossRefGoogle Scholar
Virginia, R.A. Wall, D.H., How soil structure communities in the Antartic Dry Valleys, Bioscience 49 (1999) 973983.CrossRefGoogle Scholar
Gupta V.V.S.R., Yeates G.W., Soil microfauna as bioindicators of soil health, in: Pankhurst C.E., Doube B.M., Gupta V.V.S.R., Biological indicators of soil health, CABI Publ., Wallingford, U.K., 1997.
Mulder, C., Schouten, A.J., Hund-rinke, K. Breure, A.M., The use of nematodes in ecological soil classification and assessments concepts, Ecotoxicol. Environ. Saf. 62 (2005) 278289.CrossRefGoogle Scholar
Bongers, T. Bongers, M., Functional diversity of nematodes, Appl. Soil Ecol. 10 (1998) 239251.CrossRefGoogle Scholar
Ferris, H., Bongers, T. de Goede, R.G.M., A framework for soil food web diagnostics: extension of the nematode faunal analysis concept, Appl. Soil Ecol. 18 (2001) 1329.CrossRefGoogle Scholar
Neher, D Neher, D., Role of nematodes in soil health and their use as indicators, J. Nematol. 33 (4) (2001) 161168.Google ScholarPubMed
Yeates, G.W. Bongers, T., Nematode diversity in agroecosystems, Agric. Agrosyst.d Environ. 74 (1999) 113135.CrossRefGoogle Scholar
Anon., World reference base for soil ressources: keys to reference soil groups of the World, in: ISSS Work. Group Ref. Base, World Soil Resour. Rep. no. 84, FAO, Rome, Italy, 1998.
Anon., Guidelines for soil description, 4th ed., FAO, Roma, Italy, 2006.
Amato, M. Ladd, J.N., Essay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils, Soil Biol. Biochem. 200 (1988) 107114.CrossRefGoogle Scholar
Seinhorst, J.W Seinhorst, J.W., Modifications of the elutriation method for extracting nematodes from soil, Nematologica 8 (1962) 117128.CrossRefGoogle Scholar
Yeates, G., Bongers, T., de Goede, R.G.M., Freckman, D.W. Georgieva, S.S., Feedings habits in nematode families and genera – an outline for soil ecologists, J. Nematol. 25 (1993) 315331.Google Scholar
Bongers, T., The maturity index: an ecological measure of environmental disturbance based on nematodes species composition, Oecologia 83 (1990) 1419.CrossRefGoogle ScholarPubMed
Barthelemy P., Boisgontier D., Lajoux P., Machines à bêcher, in: Choisir les outils de travail du sol, ITCF, Paris, France, 1987.
Cattan, P., Cabidoche, Y.-M., Lacas, J.-G. Voltz, M., Effects of tillage and mulching on runoff under banana (Musa spp.) on a tropical andosol, Soil Tillage Res. 86 (2006) 3851.CrossRefGoogle Scholar
Balesdent, J., Chenu, C. Balabane, M., Relationship of soil organic matter dynamics to physical protection and tillage, Soil Tillage Res. 53 (2000) 215230.CrossRefGoogle Scholar
Dorel, M Dorel, M., Problèmes de préparation des sols en bananeraie. Cas des sols à halloysite, Fruits 46 (4) (1991) 419427.Google Scholar
Ferris, H., Venette, R.C., van der Meulen, H.R. Scow, K.M., Nematode faunal indicators of soil food web condition, J. Nematol. 30 (1998) 495496.Google Scholar
Ferris, H. Matute, M., Structural and functional succession in the nematode fauna of a soil food web, Appl. Soil Ecol. 23 (2003) 93110.CrossRefGoogle Scholar
Chaussod, R., Zuvia, M., Breuil, M.C. Hétier, J.M., Biomasse microbienne et statut organique des sols tropicaux : exemple d’un sol vénézuélien des Llanos sous différents systèmes de culture, Cah. Orstom (Série Pédol.) 27 (1992) 5967.Google Scholar
Dorel, M. Ozier-Lafontaine, H., Pilotage de l’irrigation des bananeraies sur sols ferralitiques et sols vertiques en Guadeloupe : recherche d’indicateurs de l’état hydrique de la culture, Fruits 53 (1998) 1726.Google Scholar
Lecompte, F., Ozier-Lafontaine, H., Pagès, L., An analysis of growth rates and directions of growth of primary roots of field-grown banana trees in an andisol at three levels of soil compaction, Agron. 23 (2003) 209218.CrossRefGoogle Scholar