Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T14:57:49.023Z Has data issue: false hasContentIssue false

40Ar/39Ar age constraints for an early Alpine metamorphism of the Sakar unit, Sakar–Strandzha zone, Bulgaria

Published online by Cambridge University Press:  14 September 2020

Nikolay Bonev*
Affiliation:
Department of Geology, Paleontology and Fossil Fuels, Sofia University “St Kliment Ohridski”, 1504Sofia, Bulgaria
Richard Spikings
Affiliation:
Department of Earth Sciences, University of Geneva, CH-1205Geneva, Switzerland
Robert Moritz
Affiliation:
Department of Earth Sciences, University of Geneva, CH-1205Geneva, Switzerland
*
Author for correspondence: Nikolay Bonev, E-mail: niki@gea.uni-sofia.bg

Abstract

We investigated the Sakar unit metamorphic rocks of the Sakar–Strandzha zone in Bulgaria, using 40Ar/39Ar dating of amphibole from the polymetamorphic basement and white mica in the overlying upper Permian metasedimentary rocks of the Paleokastro Formation. The amphibole and white mica revealed plateau ages of 140.50 ± 1.75 Ma and 126.19 ± 1.29 Ma, respectively, indicating an Early Cretaceous cooling history of the regional amphibolite-facies metamorphism to greenschist-facies conditions. Similar metamorphic grades and cooling histories of the Sakar unit share evidence with the nearby Rhodope Massif for the northern Aegean region-wide early Alpine tectonometamorphic event.

Type
Rapid Communication
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aydin, Y (1974) Etude pétrographique et géochemique de la partie centrale du Massif d’Istranca (Turque). PhD thesis, University of Nancy, France. Published thesis.Google Scholar
Bedi, Y, Vasilev, E, Dabovski, Ch, Ergen, A, Okuyucu, C, Doǧan, A, Tekin, UK, Ivanova, D, Boncheva, I, Lakova, I, Sachanski, V, Kuşcu, I, Tuncay, E, Demiray, DG, Soycan, H and Göncüoglu, MC (2013) New age data from the tectonistratigraphic units of the Istranca “Massif” in NW Turkey: a correlation with SE Bulgaria. Geologica Carpathica 64, 255–77.CrossRefGoogle Scholar
Bonchev, G (1903) Petrographic description of the southeastern part of Bulgaria. Periodic Journal of the Bulgarian Booklet Society 54, 195.Google Scholar
Bonev, N, Filipov, P, Raicheva, R and Moritz, R (2019a) Timing and tectonic significance of Paleozoic magmatism in the Sakar unit of the Sakar-Strandzha zone, SE Bulgaria. International Geology Review 61, 1957–79.CrossRefGoogle Scholar
Bonev, N, Filipov, P, Raicheva, R and Moritz, R (2019b) Triassic magmatism along the Maritsa river valley, Sakar-Strandzha zone, Bulgaria. Review of the Bulgarian Geological Society 80, 56–7.Google Scholar
Bonev, N, Filipov, P, Raicheva, R and Moritz, R (2019c) Detrital zircon age constraints on the deposition of the Topolovgrad Group, Sakar-Strandzha Zone, SE Bulgaria. Geophysical Research Abstracts 21, 1 pp. paper EGU 2019-1921-1.Google Scholar
Bonev, N, Marchev, P, Moritz, R and Collings, D (2015) Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U-Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks. Gondwana Research 27, 760–75.CrossRefGoogle Scholar
Bonev, N, Spikings, R, Moritz, R and Marchev, P (2010) The effect of early Alpine thrusting in late-stage extensional tectonics: Evidence from the Kulidzhik nappe and the Pelevun extensional allochthon in the Rhodope Massif, Bulgaria. Tectonophysics 488, 256–81.CrossRefGoogle Scholar
Bonev, N and Stampfli, G (2011) Alpine tectonic evolution of a Jurassic subduction-accretionary complex: Deformation, kinematics and 40Ar/39Ar age constraints on the Mesozoic low-grade schists of the Circum-Rhodope Belt in the eastern Rhodope-Thrace region, Bulgaria-Greece. Journal of Geodynamics 52, 143–67.CrossRefGoogle Scholar
Boyadzhiev, S and Lilov, P (1972) On the age data for the southbulgarian granitoids from the Sredna Gora and Sakar-Strandzha zones determined by K-Ar method. Bulletin of the Geological Institute –Geochemistry, Mineralogy and Petrography 21, 211–20.Google Scholar
Boyanov, I, Kozhoukharov, D and Savov, S (1965) Geological structure of the southern slope of the Sakar Mountains between the villages of Radovets and Kostour. Review of the Bulgarian Geological Society 26, 121–34.Google Scholar
Cattò, S, Cavazza, W, Zattin, M and Okay, AI (2017) No significant Alpine tectonic overprint on the Cimmerian Strandja Massif (SE Bulgaria and NW Turkey). International Geology Review 147, 404–16.Google Scholar
Chatalov, A (1992) Petrological characteristics of the rocks of Melnitsa orthometamorphic complex, Sakar Mountains. Review of the Bulgarian Geological Society 53, 99112.Google Scholar
Chatalov, GA (1988) Recent developments in the geology of the Strandzha zone in Bulgaria. Bulletin of the Technical University Istanbul 41, 433–65.Google Scholar
Chatalov, GA (1990) Geology of the Strandzha Zone in Bulgaria. Publishing house of Bulgarian Academy of Sciences, Sofia, Geologica Balcanica, Operum Singulorum 4, pp. 263.Google Scholar
Chatalov, G (1991) Triassic in Bulgaria – a review. Bulletin of the Technical University Istanbul 41, 433–65.Google Scholar
Chavdarova, S and Machev, Ph (2017) Amphibolites from Sakar Mountain – geological position and petrological features. Proceedings of Annual Conference of the Bulgarian Geological Society (Geosciences 2017), Sofia, 7–8 December 2017. Bulgarian Geological Society, Sofia, 49–50.Google Scholar
Dabovski, Ch and Haydoutov, I (1980) The Sakar pluton. In The Precambrian in South Bulgaria (eds Kozhoukharov D and Dabovski Ch), pp. 83–89. Bulgaria, October 1980, Bulgarian Academy of Sciences, Geological Institute, Guide to Excursion IGCP project 22.Google Scholar
Dabovski, Ch, Savov, S, Chatalov, G and Shiliafov, G (1994) Geological map of Bulgaria, scale 1:100 000: Map sheet Elhovo, Committee of Geology and Mineral Resources, Geology and Geophysics Corp.Google Scholar
Dabovski, Ch and Zagorchev, I (2009) Introduction: Mesozoic evolution and Alpine structure. In Geology of Bulgaria, Volume 2, Part 5, Mesozoic Geology (eds I Zagorchev, C Dabovski and T Nikolov), pp. 13–30. Sofia: Academic Publisher Prof. Marin Drinov.Google Scholar
Dimitrov, S (1958) Über die alpidische Regionalmetamorphose und ihre Beziehungen zu der Tektonik und dem Magmatismus in Südostbulgarien. Geologie 7, 560–8.Google Scholar
Elmas, A, Yilmaz, Y, Yigitbas, N and Ulrich, T (2010) A Late Jurassic-Early Cretaceous metamorphic core complex, Strandja Massif, NW Turkey. International Journal of Earth Sciences 100, 1251–63.CrossRefGoogle Scholar
Firsov, L (1975) On the age of the South-Bulgarian granitoids of the Rhodope Massif, Srednogorie and Sakar-Strandzha. Geology and Geophysics (Sofia) 1, 2734.Google Scholar
Georgiev, S, von Quadt, A, Heinrich, C, Peytcheva, I and Marchev, P (2012) Time evolution of rifted continental arc: integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria. Lithos 154, 5367.CrossRefGoogle Scholar
Gocev, P (1979) The place of Strandza in the Alpine structure of the Balkan Peninsula. Review of the Bulgarian Geological Society 30, 2746.Google Scholar
Gocev, PM (1991) Some problems of the nappe tectonics of the Strandzides in Bulgaria and Turkey. Bulletin of the Technical University Istanbul 44, 137–64.Google Scholar
Harrison, TM (1981) Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology 78, 324–31.CrossRefGoogle Scholar
Harrison, TM, Célérier, J, Aikman, AB, Hermann, J and Heizler, MT (2009) Diffusion of 40Ar in muscovite. Geochimica and Cosmochimica Acta 73, 1039–51.Google Scholar
Janichevski, A (1946) Aperçu abrège sur la géologie de la montagne Strandja dans la Bulgarie de sud-est. In Géologie de la Bulgarie (eds FR Cohen, Tz Dimitroff and B Kamenov), pp. 380–89. Department of Geology and Mining, Sofia, Annuaire de la direction pour les recherches géologiques et minières A4.Google Scholar
Kamenov, BK, Vergilov, V, Dabovski, Ch, Vergilov, I and Ivchinova, L (2010) The Sakar batholith – petrology, geochemistry and magmatic evolution. Geochemistry, Mineralogy and Petrology (Sofia) 48, 137.Google Scholar
Kozhoukharov, D (1987) Lithostratigraphy and structure of Precambrian in the core of the Byala reka dome in the Eastern Rhodope. Geologica Balcanica 17, 1539.Google Scholar
Kozhoukharova, E and Kozhoukharov, D (1973) Stratigraphy and petrology of the Precambrian metamorphic rocks from the Sakar Mountain. Bulletin of the Geological Institute –Geochemistry, Mineralogy and Petrography 22, 193210.Google Scholar
Kuiper, K, Deino, A, Hilgen, F, Krijgsman, W, Renne, P and Wijbrans, JR (2008) Synchronizing rock clocks of Earth history. Science 320, 500–4.Google ScholarPubMed
Lakova, I, Gocev, P and Yanev, S (1992) Palynostratigraphy and geological setting of the Lower Paleozoic allochthon in Dervent Heights, SE Bulgaria. Geologica Balcanica 22, 7188.Google Scholar
Liati, A, Gebauer, D and Fanning, CM (2011) Geochronology of the Alpine UHP Rhodope zone: A review of isotopic ages and constraints on the geodynamic evolution. In Ultrahigh-Pressure Metamorphism 25 Years after the Discovery of Coesite and Diamond (eds Dobrzhinetskaya, LF, Faryad, SW, Wallis, S and Cuthbert, S), pp. 295324. Elsevier, Amsterdam.Google Scholar
Liati, A, Theye, T, Fanning, CM, Gebauer, D and Rainer, N (2016) Multiple subduction cycles in the Alpine orogeny, as recorded in single zircon crystals (Rhodope zone, Greece). Gondwana Research 29, 199207.CrossRefGoogle Scholar
Lilov, P, Maliakov, Y and Balogh, K (2004) K-Ar dating of metamorphic rocks from Strandja massif, SE Bulgaria. Geochemistry, Mineralogy and Petrology (Sofia) 41, 107–20.Google Scholar
Machev, PH, Ganev, V and Klain, L (2015) New LA-ICP-MS U-Pb zircon dating for Strandja granitoids (SE Bulgaria): evidence for two-stage late Variscan magmatism in the internal Balkanides. Turkish Journal of Earth Sciences 24, 230–48.Google Scholar
Malyakov, Y and Bakalova, DG (1978) The Lower Permian near the village of Kondolovo Strandja Mountain. Comptes Rendus de l’Academie bulgare des Sciences 31, 715–8.Google Scholar
Malyakov, Y and Prokop, RP (1997) Prevue paleontologiques (Crinoides devoniennes) pour l’age de certaines roches epimetamorphiques du Strandja bulgare. Comptes Rendus de l’Academie bulgare des Sciences 50, 99102.Google Scholar
McDougall, I and Harrison, TM (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method, Second Edition. Oxford University Press, Oxford, 269 pp.Google Scholar
Natal’in, B, Sunal, G, Gun, E, Wang, B and Zhiking, Y (2016) Precambrian to Early Cretaceous rocks of the Strandja Massif (northwestern Turkey): evolution of long-lasting magmatic arc. Canadian Journal of Earth Sciences 53, 1312–35.CrossRefGoogle Scholar
Natal’in, B, Sunal, G, Satir, M and Toraman, E (2012) Tectonics of the Strandja Massif, NW Turkey: history of long-lived arc at the northern margin of Palaeo-Tethys. Turkish Journal of Earth Sciences 21, 755–98.Google Scholar
Neubauer, F, Bilyarski, S, Genser, J, Ivanov, Z, Peytcheva, I and von Quadt, A (2010) Jurassic and Cretaceous tectonic evolution of the Sakar and Srednogorie zones, Bulgaria: 40Ar/39Ar mineral ages and structures. In Proceedings of the XIX Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010. Geologica Balcanica 39, 12, 273–4.Google Scholar
Okay, AI, Satır, M, Tüysüz, O, Akyüz, S and Chen, F (2001) The tectonics of Strandja Massif: late-Variscan and mid-Mesozoic deformation and metamorphism in the northern Aegean. International Journal of Earth Sciences 90, 217233.CrossRefGoogle Scholar
Palshin, IG, Skenderov, GM, Bozkov, B, Mihailov, JN, Kotov, EI, Bedrinov, IT and Ivanov, IM (1989) New geochronological data on the Cimmerian and Alpine magmatic and hydrothermal formations in Srednogorie and Stara Planina zones, Bulgaria. Review of the Bulgarian Geological Society 40, 7591.Google Scholar
Pamir, HN and Baykal, F (1947) The geological structure of the Strandja Massif. Bulletin of the Geological Society of Turkey 1, 743.Google Scholar
Savov, S and Dabovski, Ch (1980) The metamorphic Triassic in Topolovgrad syncline. In The Precambrian in south Bulgaria (eds Kozhoukharov, D and Dabovski, C), pp. 127–32. Bulgaria, October 1980, Bulgarian Academy of Sciences, Geological Institute, Guide to Excursion IGCP project 22.Google Scholar
Sunal, G, Natal’in, B, Satir, M and Toraman, E (2006) Paleozoic magmatic events in the Strandja Massif, NW Turkey. Geodinamica Acta 19, 283300.CrossRefGoogle Scholar
Sunal, G, Satir, M, Natal’in, BA, Topuz, G and Vonderschmidt, O (2011) Metamorphism and diachronous cooling in a contractional orogen: the Strandja massif, NW Turkey. Geological Magazine 148, 580–96.CrossRefGoogle Scholar
Sunal, G, Satir, M, Natal’in, B and Toraman, E (2008) Paleotectonic position of the Strandja massif and surrounding continental blocks based on zircon Pb-Pb age studies. International Geology Review 50, 519–45.CrossRefGoogle Scholar
Szopa, K, Salacinska, A, Gumsley, AP, Shew, D, Petrov, P, Gaweda, A, Zagorska, A, Deput, E, Gospodinov, N and Banasik, K (2020) Two-stage Late Jurassic to Early Cretaceous hydrothermal activity in the Sakar unit, Southeastern Bulgaria. Minerals 10, 16 pp.CrossRefGoogle Scholar
Villagómez, D and Spikings, R (2013) Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos 160–161, 228–49.CrossRefGoogle Scholar
Zacharieva-Kovacheva, K, Ware, S and Chatalov, G (1964) Geological age of low metamorphic rocks north of Golyam Dervent, SE Bulgaria. Comptes Rendus de l’Academie bulgare des Sciences 17, 749–51.Google Scholar
Supplementary material: File

Bonev et al. supplementary material

Table S1

Download Bonev et al. supplementary material(File)
File 80.4 KB