Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T10:55:21.376Z Has data issue: false hasContentIssue false

An approach towards the projectile trajectory during the oblique Steinheim meteorite impact by the interpretation of structural crater features and the distribution of shatter cones

Published online by Cambridge University Press:  07 September 2017

E. BUCHNER*
Affiliation:
HNU - Neu-Ulm University of Applied Sciences, Wileystraße 1, D-89231 Neu-Ulm, Germany Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstraße 18, D-70174 Stuttgart, Germany
*
*Author for correspondence: elmar.buchner@hs-neu-ulm.de

Abstract

The distinct alignment of the Steinheim Basin and the Nördlinger Ries impact structures in SW Germany and the Central European tektite strewn field suggest ENE-directed trajectories of the Ries and Steinheim impacting bodies. From impact experiments, the asymmetry of the Steinheim crater and the arrangement of structural features therein are in good agreement with features produced during an oblique impact at 30° from the horizontal. The restriction of shatter cones to the eastern segment of the Steinheim Basin crater also suggests a west–east-directed trend of the impact direction, and supports previous models that favoured such impactor trajectory.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, H. & Ahrens, T. J. 2005. Shock-induced damage beneath normal and oblique impact craters. Houston, Texas, Lunar and Planetary Institute. In Proceedings of 36th Lunar and Planetary Science, abstract 1243, CD-ROM.Google Scholar
Anders, D., Buchner, E., Schmieder, M. & Kegler, P. 2013. Varietäten von Schmelzelithologien in den Impaktiten des Steinheimer Beckens (SW-Deutschland). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences) 164, 491501.Google Scholar
Artemieva, N. A. 2002. Tektite origin in oblique impact: Numerical modeling. In Meteorite Impacts in Precambrian Shields (eds Plado, Y. & Pesonen, L.), pp. 257–76. Berlin, Germany: Springer Verlag.Google Scholar
Baratoux, D. & Melosh, H. J. 2003. The formation of shatter cones by shock wave interference during impacting. Earth and Planetary Science Letters 216, 4354.CrossRefGoogle Scholar
Baratoux, D. & Reimold, W. U. 2016. The current state of knowledge about shatter cones. Introduction to the Special Issue on ‘Shatter Cones – Nature and Genesis’. Meteoritics and Planetary Science 51 (8), 1389–434.Google Scholar
Branco, W. & Fraas, E. 1905. Das kryptovulcanische Becken von Steinheim. Abhandlungen der königlich preussischen Akademie der Wissenschaften zu Berlin. Physikalisch Abhandlungen 1, 164 (in German).Google Scholar
Buchner, E. & Schmieder, M. 2010. Steinheim suevite – a first report of melt-bearing impactites from the Steinheim Basin (SW Germany). Meteoritics and Planetary Science 45, 1093–107.Google Scholar
Buchner, E. & Schmieder, M. 2013 a. Das Ries-Steinheim-Ereignis – Impakt in eine miozäne Seen- und Sumpflandschaft. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences) 164, 459–70.Google Scholar
Buchner, E. & Schmieder, M. 2013 b. Der Steinheimer Suevit – schmelzeführende Impaktite aus dem Steinheimer Becken, Südwestdeutschland. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences) 164, 471–90.Google Scholar
Buchner, E. & Schmieder, M. 2015. The Steinheim Basin impact crater (SW-Germany) – Where are the ejecta? Icarus 250, 529–43.Google Scholar
Buchner, E. & Schmieder, M. 2017. Rare metals on shatter cone surfaces from the Steinheim Basin (SW Germany) – remnants of the impacting body? Geological Magazine, published online 13 February 2017. doi: https://doi.org/10.1017/S0016756816001357.Google Scholar
Buchner, E., Schwarz, W. H., Schmieder, M. & Trieloff, M. 2010. Establishing a 14.6 ± 0.2 Ma age for the Nördlinger Ries impact (Germany) – a prime example for concordant isotopic ages from various dating materials. Meteoritics and Planetary Science 45, 662–74.Google Scholar
Buchner, E., Schwarz, W. H., Schmieder, M. & Trieloff, M. 2013. Das Alter des Meteoritenkraters Nördlinger Ries – eine Übersicht und kurze Diskussion der neueren Datierungen des Riesimpakts. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences) 164, 433–45.Google Scholar
Dahl, J. M. & Schultz, P. H. 1999. In-target stress wave momentum content in oblique impacts. Houston, Texas, Lunar and Planetary Institute. In Proceedings of 30th Lunar and Planetary Science, abstract 1854, CD-ROM.Google Scholar
Dahl, J. M. & Schultz, P. H. 2001. Measurement of stress wave asymmetries in hypervelocity projectile impact experiments. International Journal of Impact Engineering 26, 145–55.CrossRefGoogle Scholar
Dietz, R. S. 1959. Shatter cones in cryptoexplosion structures (meteorite impact?). The Journal of Geology 67, 496505.Google Scholar
Dietz, R. S. 1960. Meteorite impact suggested by shatter cones in rock. Science 131, 1781–4.Google Scholar
Dietz, R. S. & Butler, L. W. 1964. Shatter-cone orientations at Sudbury, Canada. Nature 4, 204–5.Google Scholar
French, B. M. 1998. Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution no. 954, Lunar and Planetary Institute, Houston TX, 120 pp.Google Scholar
French, B. M. & Koeberl, C. 2010. The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why. Earth-Science Reviews 98, 123–70.Google Scholar
French, B. M. & Short, N. M. (eds) 1968. Shock Metamorphism of Natural Materials. Baltimore, Maryland, USA: Mono Book, 644 pp.Google Scholar
Groschopf, P. & Reiff, W. 1969. Das Steinheimer Becken. Ein Vergleich mit dem Ries. Geologica Bavarica 61, 400–12 (in German).Google Scholar
Heizmann, E. P. J. & Reiff, W. 2002. Der Steinheimer Meteorkrater. Munich: Pfeil, 160 pp. (in German).Google Scholar
Herrick, R. R. 2017. Small impacts and small impactors. In Proceedings of 48th Lunar and Planetary Science Conference, 20–24 March. The Woodlands, Texas, Abstract #2803.Google Scholar
Herrick, R. R. & Hessen, K. K. 2006. The planforms of low-angle impact craters in the northern hemisphere of Mars. Meteoritics & Planetary Science 41, 1483–95.Google Scholar
Howard, K. A., Offield, T. W. & Wilshire, H. G. 1972. Structure of Sierra Madera, Texas, as a guide to central peaks of lunar craters. Geological Society of America Bulletin 83, 2795–808.Google Scholar
Ivanov, B. A. & Stöffler, D. 2005. The Steinheim impact crater, Germany: Modeling of a complex crater with central uplift. In Proceedings of 36th Lunar and Planetary Science Conference, Houston, 14–18 March. Abstract #1443.Google Scholar
Kenkmann, T. & Poelchau, M. H. 2009. Low-angle collision with Earth: the elliptical impact crater Matt Wilson, Northern Territory, Australia. Geology 37, 459–62.CrossRefGoogle Scholar
Kenkmann, T., Reimold, W. U., Khirfan, M., Salameh, E., Khoury, H. & Konsul, K. 2010. The complex impact crater Jebel Waqf as Suwwan in Jordan: effects of target heterogeneity and impact obliquity on central uplift formation. Geological Society of America, Special Papers 465, 471–87.Google Scholar
Kranz, W. 1923. Geognostischen Spezialkarte von Württemberg (1:25.000). Atlasblatt Heidenheim. Abschnitt: Geologische Spezialkarte des Steinheimer Beckens. Württembergisches Statistisches Landesamt Stuttgart (Klett).Google Scholar
Langenhorst, F. 2002. Shock metamorphism of some minerals: basic introduction and microstructural observations. Bulletin of the Czech Geological Survey 77, 265–82.Google Scholar
Mattmüller, C. R. 1994. Ries und Steinheimer Becken. Geologischer Führer und Einführung in die Meteoritenkunde. Stuttgart: Ferdinand Enke Verlag, 152 pp. (in German).Google Scholar
Milton, D. J., Barlow, B. C., Brett, R., Brown, A. R., Glikson, A. Y., Manwaring, E. A., Moss, F. J., Sedmik, E. C. E., Van Son, J. & Young, G. A. 1972. Gosses Bluff Impact Structure, Australia. Science 175, 1199–207.Google Scholar
Nicolaysen, L. O. & Reimold, W. U. 1999. Vredefort shatter cones revisited. Journal of Geophysical Research 104, 4911–30.Google Scholar
Osinski, G. R. & Ferrière, L. 2016. Shatter cones: (mis)understood? Science Advances 2, e1600616.CrossRefGoogle ScholarPubMed
Pierazzo, E. & Melosh, H. J. 2000. Hydrocode modeling of oblique impacts: the fate of the projectile. Meteoritics and Planetary Science 35, 117–30.Google Scholar
Poelchau, M. H., Michalski, C., Deutsch, A., Thoma, K., Schäfer, F. & Kenkmann, T. 2015. Experimental Cratering in Carrara Marble: Latest Results from the MEMIN Research Unit. In Proceedings of 46th Lunar and Planetary Science Conference, 16–20 March, The Woodlands, Houston Texas, USA; abstract # 2447.Google Scholar
Reiff, W. 1976. The Steinheim Basin – A meteorite crater. Abstract presented at the Symposium on Planetary Cratering Mechanics, 13–17 September 1976, Flagstaff, AZ. LPI Contribution 259, 112–4.Google Scholar
Reiff, W. 1977. The Steinheim Basin – An impact structure. In Impact and Explosion Cratering: Planetary and Terrestrial Implications (eds Roddy, D. J., Pepin, R. O. & Merrill, R.). Proceedings of the Symposium on Planetary Cratering Mechanics, Flagstaff, AZ, 13–17 September 1976. New York: Pergamon Press, 309320.Google Scholar
Reiff, W. 1988. Zur Gleichaltrigkeit der Einschlagskrater (Meteorkrater) Steinheimer Becken und Nördlinger Ries. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 70, 383–97 (in German).Google Scholar
Reiff, W. 2004. Geologische Karte von Baden-Württemberg 1:25000, 7326 Heidenheim, mit Erläuterungen, Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, 223 pp. (in German).Google Scholar
Sagy, A., Fineberg, J. & Reches, Z. 2004. Shatter cones: Branched, rapid fractures formed by shock impact. Journal of Geophysical Research 109, B10209, doi: 10.1029/2004/JB003016.Google Scholar
Sagy, A., Reches, Z. & Fineberg, J. 2002. Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones. Nature 418, 310–3.Google Scholar
Scherler, D., Kenkmann, T. & Jahn, A. 2006. Structural record of an oblique impact. Earth and Planetary Science Letters 248, 4353.Google Scholar
Schmidt, G. & Pernicka, E. 1994. The determination of platinum group elements (PGE) in target rocks and fall-back material of the Nördlinger Ries impact crater, Germany. Geochimica et Cosmochimica Acta 58, 5083–90.Google Scholar
Schmieder, M. & Buchner, E. 2009. Fe-Ni-Co sulfides from the Steinheim Basin, SW Germany: possible impactor traces (abstract #5073). Meteoritics and Planetary Science 44, A185.Google Scholar
Schmieder, M. & Buchner, E. 2010 a. New insights into the Steinheim central uplift - part III: Shatter cones and the ‘cone-in-cone’ problem reloaded. In Proceedings of the 73rd Conference of the Meteoritical Society, 26–30 July 2010, New York, USA, abstract no. 5012.Google Scholar
Schmieder, M. & Buchner, E. 2010 b. Possible iron meteoritic contamination in impact melt particles from the Steinheim Basin (Baden-Württemberg, Germany). In Proceedings of the 41st Lunar and Planetary Science Conference, 1–5 March 2010, The Woodlands, Texas, USA, abstract no. 2103.Google Scholar
Schmieder, M. & Buchner, E. 2013. Strahlenkegel in Opalinuston-Konkretionen des Steinheimer Beckens (Baden-Württemberg). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geosciences) 164, 503–13.Google Scholar
Schmieder, M., Trieloff, M., Schwarz, W. H., Buchner, E. & Jourdan, F. 2014. Supportive comment on “Morphology and population of binary asteroid impact craters”, by Miljković, K., Collins, G. S., Mannick, S. & Bland, P. A., Earth and Planetary Science Letters 363 (2013) 121132 – an updated assessment. Earth and Planetary Science Letters 405, 281–4.Google Scholar
Schultz, P. H. 1994. Chicxulub as an oblique impact. In Proceedings of the 25th Lunar and Planetary Science Conference, Houston, TX, 14–18 March 1994, 1211.Google Scholar
Schultz, P. H. & Anderson, R. R. 1996. Asymmetry of the Manson impact structure: Evidence for impact angle and direction. In: The Manson impact structure, Iowa: Anatomy of an impact crater. Geological Society of America, Special Paper 302, 397417.Google Scholar
Stöffler, D., Artemieva, N. A. & Pierazzo, E. 2002. Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field. Meteoritics and Planetary Science 37, 1893–907.Google Scholar
von Engelhardt, W., Bertsch, W., Stöffler, D., Groschopf, P. & Reiff, W. 1967. Anzeichen für den meteoritischen Ursprung des Beckens von Steinheim. Die Naturwissenschaften 54, 198–9 (in German).Google Scholar