Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T06:48:36.552Z Has data issue: false hasContentIssue false

Building up of a nested granite intrusion: magnetic fabric, gravity modelling and fluid inclusion planes studies in Santa Eulália Plutonic Complex (Ossa Morena Zone, Portugal)

Published online by Cambridge University Press:  14 November 2014

H. SANT’OVAIA*
Affiliation:
Geology Centre of Porto University, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
P. NOGUEIRA
Affiliation:
Geology Centre of Porto University, Geosciences Department of Évora University, Largo dos Colegiais 2, 7004-516 Évora, Portugal
J. CARRILHO LOPES
Affiliation:
Geology Centre of Lisbon University, Geosciences Department of Évora University, Largo dos Colegiais 2, 7004-516 Évora, Portugal
C. GOMES
Affiliation:
Geophysics Centre of University of Coimbra, Department of Earth Sciences, Faculty of Sciences and Technology of University of Coimbra, Largo Marquês de Pombal, 3000-272 Coimbra, Portugal
M.A. RIBEIRO
Affiliation:
Geology Centre of Porto University, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
H.C.B. MARTINS
Affiliation:
Geology Centre of Porto University, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
A. DÓRIA
Affiliation:
Geology Centre of Porto University, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
C. CRUZ
Affiliation:
Geology Centre of Porto University, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
L. LOPES
Affiliation:
Geosciences Department of Évora University, Largo dos Colegiais 2, 7004-516 Évora, Portugal
R. SARDINHA
Affiliation:
Geosciences Department of Évora University, Largo dos Colegiais 2, 7004-516 Évora, Portugal
A. ROCHA
Affiliation:
Geophysics Centre of University of Coimbra, Department of Earth Sciences, Faculty of Sciences and Technology of University of Coimbra, Largo Marquês de Pombal, 3000-272 Coimbra, Portugal
F. NORONHA
Affiliation:
Geology Centre of Porto University, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
*
Author for correspondence: hsantov@fc.up.pt

Abstract

The Santa Eulália Plutonic Complex (SEPC), located in the Ossa Morena Zone (south Portugal), is composed of a medium- to coarse-grained pink granite (G0-type) and a central grey medium-grained biotite granite (G1-type). Available Rb–Sr data indicates an age of 290 Ma. An emplacement model for the SEPC is proposed, taking into account magnetic fabric, 2D gravity modelling and fluid inclusion planes studies. The G0 and G1 types demonstrate different magnetic behaviour: G0 is considered a magnetite-type granite and G1 is an ilmenite-type granite. The formation of G0 required oxidized conditions related to the interaction of mafic rocks with a felsic magma. The 2D gravity modelling and subvertical magnetic lineations show that the feeder zone of the SEPC is located in the eastern part of the pluton, confirming the role of the Assumar and Messejana Variscan faults in the process of ascent and emplacement. The magma emplacement was controlled by ENE–WSW planar anisotropies related to the final brittle stages of the Variscan Orogeny. The emplacement of the two granites was almost synchronous as shown by their gradational contacts in the field. The magnetic fabric however suggests emplacement of the G0-type first, closely followed by emplacement of the G1-type, pushing the G0 laterally which becomes more anisotropic towards the margin. The G1-type became flattened, acquiring a dome-like structure. The SEPC is a nested pluton with G0-type granite assuming a tabular flat shape and G1-type forming a rooted dome-like structure. After emplacement, SEPC recorded increments of the late Variscan stress field documented by fluid inclusion planes in quartz.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, A., Piçarra Almeida, J., Borrego, J., Pedro, J. & Oliveira, J. T. 2013. As regiões centro e sul da Zona de Ossa Morena. In Geologia de Portugal, Volume I, Geologia Pré-mesozóica de Portugal (eds Dias, R., Araújo, A., Terrinha, P. & Kullerberg, J. C.), pp. 509–49. Lisboa: Escolar Editora.Google Scholar
Bakker, R. J. 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chemical Geology 194, 323.CrossRefGoogle Scholar
Bloemendal, J., Lamb, J. B. & King, J. 1988. Paleoenvironmental implications of rock-magnetic properties of late quaternary sediment cores from the eastern equatorial Atlantic. Paleoceanography 3 (1), 6187.CrossRefGoogle Scholar
Bodnar, R. J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683–4.Google Scholar
Borradaile, G. J. 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156, 120.CrossRefGoogle Scholar
Borradaile, G. J. & Henry, B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Science Reviews 42, 4993.Google Scholar
Bouchez, J. L. 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Granite: From Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E.), pp. 95112. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Brantley, S. L. 1992. The effect of fluid chemistry on microcracks life-times. Earth and Planetary Science Letters 113, 145–56.CrossRefGoogle Scholar
Carmichael, I. S. E. 1991. The redox states of basic and silicic magmas: a reflection of their source regions? Contributions to Mineralogy and Petrology 106, 129–41.CrossRefGoogle Scholar
Collinson, D. W. 1983. Methods in Rock Magnetism and Paleomagnetism: Techniques and Instrumentation. London: Chapman and Hall.CrossRefGoogle Scholar
Cruz, C., Ribeiro, M. A. & Sant’Ovaia, H. 2013. Thermal effects of the Santa Eulália Plutonic Complex (Southern Portugal) on the metaigneous and metasedimentary host rocks. In IX Congreso Ibérico e IX Congreso Nacional de Geoquímica. Session de póster, pp. 3133. Soria, September 2013.Google Scholar
Dória, A., Ribeiro, M. A., Sant’Ovaia, H. & Fernandes, F. 2011. Host rocks of Santa Eulalia Plutonic Complex (Southern Portugal): A preliminary study. Mineralogical Magazine 75 (3), 774.Google Scholar
Dória, A., Sant’Ovaia, H., Ribeiro, M. A. & Alves, M. 2009. Fluid inclusions planes and anisotropy of magnetic susceptibility studies in Porto granite massif (northern Portugal). Geochimica et Cosmochimica Acta Goldschmidt Conference Abstracts 73 (13, S1), A300.Google Scholar
Fonseca, P. 1995. Estudo da Sutura Varisca no SW Ibérico nas regiões de Serpa-Beja-Torrão e Alvito-Viana do Alentejo. Ph.D. thesis, Lisboa University, Lisboa. Published thesis.Google Scholar
Fonseca, P., Munhá, J., Pedro, J., Rosas, F., Moita, P., Araújo, A. & Leal, N. 1999. Variscan ophiolites and high-pressure metamorphism in Southern Iberia. Ofioliti 24 (2), 259–68.Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.Google Scholar
Frost, C. D. & Frost, B. R. 2011. On Ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology 52, 3953.CrossRefGoogle Scholar
Gil-Imaz, A., Pocoví, A., Lago, M., Galé, C., Arranz, E., Rillo, C. & Guerrero, E. 2006. Magma flow and thermal contraction fabric in tabular intrusions inferred from AMS analysis. A case study in a late-Variscan folded sill of the Albarracín Massif (southeastern Iberian Chain, Spain). Journal of Structural Geology, 28, 641–53.Google Scholar
Glazner, A. F. & Bartley, J. M. 2006. Is stoping a volumetrically significant pluton emplacement process? GSA Bulletin 118, 1185–95.Google Scholar
Gonçalves, F. 1971. Subsídios para o conhecimento geológico do Nordeste Alentejano. Memórias Serviços Geológicos de Portugal 18, 162.Google Scholar
Graham, J. W. 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geological Society of America Bulletin 65, 1257–8.Google Scholar
Harland, W. B. 1971. Tectonic transpression in Caledonian Spitzbergen. Geological Magazine 108, 2742.Google Scholar
Heller, F. 1973. Magnetic anisotropy of granitic rocks of the Bergell Massif (Switzerland). Earth Planetary and Science Letters 20, 180–8.Google Scholar
Hrouda, F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5, 3782.Google Scholar
Ishihara, S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27, 292305.Google Scholar
Ishihara, S. & Matsuhisa, Y. 1999. Oxygen isotope constraints on the genesis of the Miocene Outer Zone Granitoids in Japan. Lithos 46, 523–34.Google Scholar
Jelinek, V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 79, 63–7.Google Scholar
Jesus, A., Munhá, J., Mateus, A., Tassinari, C. & Nutman, A. 2007. The Beja Layered Gabbroic Sequence (Ossa-Morena Zone, Southern Portugal): geochronology and geodynamic implications. Geodinamica Acta 20 (3), 139–57.Google Scholar
Kumar, S. 2010. Magnetite and ilmenite series granitoids of Ladakh batholith, Northwest Indian Himalaya: implications on redox conditions of subduction zone magmatism. Current Science 99 (9), 1260–4.Google Scholar
Lespinasse, M. 1999. Are fluid inclusion planes useful in structural geology? Journal of Structural Geology 21, 1237–43.Google Scholar
Lespinasse, M. & Cathelineau, M. 1995. Paleostress magnitudes determination by using fault slip and fluid inclusions planes data. Journal of Geophysical Research 100, 3895–904.Google Scholar
Lespinasse, M. & Pecher, A. 1986. Microfracturing and regional stress field: a study of preferred orientations of fluid inclusion planes in a granite from the Massif Central, France. Journal of Structural Geology 8, 169–80.Google Scholar
Lima, S. 2013. Magmatic evolution of the Pavia pluton (Ossa-Morena Zone): Geochemical and Geochronological constraints. Ph.D. thesis, Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Published thesis.Google Scholar
Lopes, L., Carrilho, J., Sant’Ovaia, H., Nogueira, P. & Ribeiro, M. A. 2013. Petrology, geochemistry and structural control of a late variscan ring pluton: the Santa Eulalia plutonic complex (Alentejo, Portugal). In Proceedings of GSA Annual Meeting, Denver, October 2013.Google Scholar
Lopes, J. M. C., Lopes, J. L. & Lisboa, J. V. 1997. Caracterização petrográfica e estrutural dos granitos róseos do Complexo Plutónico de Monforte – Santa Eulália (NE-Alentejo, Portugal). Estudos, Notas e Trabalhos, Instituto Geológico e Mineiro 39, 141–57.Google Scholar
Lopes, J. M. C., Munhá, J., Wu, C. T. & Oliveira, V. M. J. 1998. O Complexo Plutónico de Monforte-Santa Eulália (Alentejo-NE, Portugal Central): caracterização geoquímica e considerações petrogenéticas. Comunicações do Instituto Geológico e Mineiro 83, 127–42.Google Scholar
Marsh, B. D. 1982. On the mechanics of igneous diapirism, stoping, and zone melting. American Journal of Science 282, 808–55.Google Scholar
Martins, H. C. B., Sant’Ovaia, H., Abreu, J., Oliveira, M. & Noronha, F. 2011. Emplacement of the Lavadores granite (NW Portugal): U/Pb and AMS results. Comptes Rendus Geoscience 343, 387–96.Google Scholar
Martins, H. C. B., Sant’Ovaia, H. & Noronha, F. 2009. Genesis and emplacement of felsic Hercynian plutons within a deep crustal lineation, the Penacova-Régua-Verín fault: an integrated geophysics and geochemical study (NW Iberian Peninsula). Lithos 111, 142–55.Google Scholar
Martins, H. C. B., Sant’Ovaia, H. & Noronha, F. 2013. Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: constraints from U-Pb zircon geochronology, AMS data and Sr-Nd-O isotope geochemistry. Lithos 162–163, 221–35.Google Scholar
Matte, P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13, 122–8.Google Scholar
Menéndez, L. G., Azor, A., Pereira, M. D. & Acosta, A. 2006. Petrogénesis de plutón de Santa Eulália (Alto Alentejo, Portugal). Revista de la Sociedad Geológica de España 19 (1–2), 6986.Google Scholar
Moita, P., Munhá, J., Fonseca, P., Pedro, J., Tassinari, C., Araújo, A. & Palácios, T. 2005. Phase equilibrium and geochronology of Ossa-Morena eclogites. In XIV Semana de Geoquímica and VIII Congresso de geoquímica dos Países de Língua Portuguesa, Universidade de Aveiro, Portugal, 2, 471–4.Google Scholar
Moita, P., Santos, J. F. & Pereira, M. F. 2009. Layered granitoids: Interaction between continental crust recycling processes and mantle-derived magmatism. Examples from the Évora Massif (Ossa-Morena Zone, southwest Iberia, Portugal). Lithos 111, 125–41.CrossRefGoogle Scholar
Munhá, J., Oliveira, J. T., Ribeiro, A., Oliveira, V., Quesada, C. & Kerrich, R. 1986. Beja-Acebuches ophiolite characterization and geodynamic significance. Maleo 2 (13), 31.Google Scholar
Oliveira, J. T., Oliveira, V. & Piçarra, J. M. 1991. Traços gerais da evolução tectonp-estratigráfica da Zona Ossa Morena. Comunicações dos Serviços Geológicos de Portugal 77, 326.Google Scholar
Palácios, T. 1976. Contribuição para o conhecimento petrográfico do maciço granítico de Fronteira e comparação com os de Ervedal e Santa Eulália (Nordeste alentejano). Comunicações dos Serviços Geológicos de Portugal LX, 239–60.Google Scholar
Paterson, S. R., Fowler, T. K. Jr. & Miller, R. B. 1996. Pluton emplacement in arcs: A crustal-scale exchange process. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 115–23.CrossRefGoogle Scholar
Paterson, S. & Vernon, R. H. 1995. Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin 107, 1356–80.Google Scholar
Pereira, M. F., Silva, J. B., Solá, A. R. & Chichorro, M. 2013. Nordeste Alentejano. In Geologia de Portugal, Volume I, Geologia Pré-mesozóica de Portugal (eds Dias, R., Araújo, A., Terrinha, P. & Kullerberg, J. C.), pp. 493508. Lisboa: Escolar Editora.Google Scholar
Pereira, M. F., Silva, J. B., Solá, A. R., Chichorro, M., Moita, P., Santos, J. F., Apraiz, A. & Ribeiro, C. 2007. Crustal growth and deformation process in the northern Gondwana margin: Constraints from the Évora Massif (Ossa-Morena Zone, southwest Iberia, Portugal). In The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision (eds Linnemann, U., Nance, R. D., Kraft, P. & Zulauf, G.), pp. 333–58. Geological Society of America, Special Paper no. 423.Google Scholar
Pin, C., Fonseca, P. E., Paquette, J. L., Castro, P. & Matte, P. 2008. The ca. 350 Ma Beja Igneous Complex: a record of transcurrent slab-break off in the Southern Iberia Variscan Belt? Tectonophysics 461, 365–77.CrossRefGoogle Scholar
Pinto, M. S. 1984. Granitóides Caledónicos e Hercínicos na Zona Ossa Morena (Portugal). Memórias e Notícias, Publicações do Museu e Laboratório Mineralógico e Geológico da Universidade de Coimbra (Portugal) 97, 8194.Google Scholar
Poty, B., Leroy, J. & Jachimowicz, L. 1976. Un nouvel appareil pour la mesure des températures sous le microscope, l’installation de microthermométrie Chaixmeca. Bulletin de la Société Française de Minéralogie et de Cristallographie 99, 182–6.Google Scholar
Prieto, A. C., Guedes, A., Dória, A., Noronha, F. & Jiménez, J. 2012. Quantitative determination of gaseous phase compositions in fluid inclusions by Raman microspectrometry. Spectroscopy Letters 45, 156–60.Google Scholar
Quesada, C. 2006. The Ossa-Morena Zone of the Iberian Massif: a tectonostratigraphic approach to its evolution. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 157, 585–95.CrossRefGoogle Scholar
Quesada, C., Fonseca, P., Munhá, J., Oliveira, J. & Ribeiro, A. 1994. The Beja-Acebuches Ophiolite (Southern Iberia Variscan Foldbelt): geological characterization and geodynamic significance. Boletín Geológico y Minero de España 105 (1), 349.Google Scholar
Ribeiro, A., Antunes, M. T., Ferreira, M. P., Rocha, R. B., Soares, A. F., Zbyszewski, G., Almeida, F. M., Carvalho, D. & Monteiro, J. H. 1979. Introduction à la Géologie Générale du Portugal. Lisboa: Serviços Geológicos de Portugal, pp. 114.Google Scholar
Ribeiro, M. A., Cruz, C. & Martins, H. 2013. Metamorfismo do encaixante de Santa Eulália. In Plutões Graníticos: da Génese à Instalação. Técnicas e Metodologias de Estudo. Workshop, livro de resumos 4. November 2013, Porto.Google Scholar
Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H., Coke, C. & Pedros, J. 2007. Geodynamic evolution of the SW Europe Variscides. Tectonics 26, TC6009, doi: 10.1029/2006TC002058.Google Scholar
Ribeiro, A., Munhá, J., Fonseca, P., Araújo, A., Pedro, J., Mateus, A., Tassinari, C., Machado, G. & Jesus, A. 2010. Variscan ophiolite belts in the Ossa-Morena Zone (Southwest Iberia): geological characterization and geodynamic significance. Gondwana Research 17, 408–21.Google Scholar
Roedder, E. 1984. Fluid inclusions. In Reviews in Mineralogy, vol. 12 (ed. Ribbe, P. E.), pp. 644. Mineralogical Society of America.Google Scholar
Sanchez-Carretero, R., Eguiluz, L., Pascual, E. & Carracedo, M. 1990. Igneous rocks. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. & García, E. Martínez), pp. 292313. Berlin: Springer-Verlag.Google Scholar
Sandgren, P. & Thompson, R. 1990. Mineral magnetic characteristics of podzolic soils developed on sand dunes in the Lake Gosciaz catchment, central Poland. Physics of the Earth and Planetary Interiors 60, 297313.Google Scholar
Sant’Ovaia, H., Bouchez, J. L., Noronha, F., Leblanc, D. & Vigneresse, J. L. 2000. Composite-laccolith emplacement of the post-tectonic Vila Pouca de Aguiar granite pluton (northern Portugal): a combined AMS and gravity study. Transactions of the Royal Society of Edinburgh: Earth Sciences 9, 123–37.Google Scholar
Sant’Ovaia, H., Olivier, P., Ferreira, N., Noronha, F. & Leblanc, D. 2010. Magmatic structures and kinematics emplacement of the Hercynian granites from Central Portugal (Serra da Estrela and Castro Daire areas). Journal of Structural Geology 32, 1450–65.CrossRefGoogle Scholar
Schermerhorn, L. J. G., Priem, H. N. A., Boelrijk, N. A. I. M., Hebeda, E. H., Verdurmen, E. A. Th. & Verschure, R. H. 1978. Age and origin of the Messejana Dolerite Fault-Dike System (Portugal and Spain) in the light of the opening of the North Atlantic Ocean. The Journal of Geology 86 (3), 229309.Google Scholar
Shepherd, T. J., Rankin, A. H. & Alderton, D. H. M. 1985. A Pratical Guide to Fluid Inclusion Studies. Glasgow: Blackie & Son Ltd. Google Scholar
Simancas, J. F., Carbonell, R., González Lodeiro, F., Pérez Estaún, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A., Martínez Poyatos, D., Almodóvar, G. R., Pascual, E., Sáez, R. & Expósito, I. 2003. The crustal structure of the transpressional Variscan Orogen of SW Iberia (IBERSEIS). Tectonics 22 (6), 1962–74.Google Scholar
Simancas, J. F., Martínez Poyatos, D. J., Expósito, I., Azor, A. & González Lodeiro, F. 2001. The structure of a major suture zone in the SW Iberian Massif: the Ossa Morena/Central Iberian contact. Tectonophysics 332, 295308.Google Scholar
Smith, D. L. & Evans, B. 1984. Diffusional crack healing in quartz. Journal of Geophysical Research 89, 4125–35.Google Scholar
Sylvester, A. 1998. Magma mixing, structure, and re-evaluation of the emplacement mechanism of Vrådal pluton, central Telemark, southern Norway. Norsk Geologisk Tidsskrift 78, 259–76.Google Scholar
Tarling, D. H. & Hrouda, F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman and Hall, 217 pp.Google Scholar
Thompson, R. & Oldfield, F. 1986. Environmental Magnetism. London: Allen & Unwin, 227 pp.Google Scholar
Žák, J., Holub, F. V. & Kachlík, V. 2006. Magmatic stoping as an important emplacement mechanism of Variscan plutons: evidence from roof pendants in the Central Bohemian Plutonic Complex (Bohemian Massif). International Journal of Earth Sciences 95 (5), 771–89.Google Scholar
Supplementary material: Image

Sant’ovaia Supplementary Material

Supplementary Material

Download Sant’ovaia Supplementary Material(Image)
Image 8.8 MB
Supplementary material: Image

Sant’ovaia Supplementary Material

Supplementary Material

Download Sant’ovaia Supplementary Material(Image)
Image 8.8 MB