Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-21T00:51:31.887Z Has data issue: false hasContentIssue false

The durations of Silurian graptolite zones

Published online by Cambridge University Press:  01 May 2009

Richard A. Hughes
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA

Abstract

Recently published radiometric data show the duration of the Silurian Period to be approximately 32 Ma, significantly longer than previous estimates. Radiometric and graphic correlation studies demonstrate considerable variation in the durations of the four Silurian epochs: approximately 13 Ma for the Llandovery, 4 Ma for the Wenlock, 5 Ma for the Ludlow and 10 Ma for the Přídolí. Using this new geochronological data, figures for average graptolite zone duration are presented for each epoch, ranging from as little as 0.44 Ma in the Wenlock, to 1.43 Ma in the Přídolí. The figures provide a refined subdivision of the Silurian timescale, of value to studies which use Silurian graptolite zones to calibrate geological processes.

Type
Rapid Communications
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, R. P., Anderson, T. B., & Mccurry, J. A., 1987. Along-strike variation in the stratigraphical and structural profile of the Southern Uplands Central Belt in Galloway and Down. Journal of the Geological Society, London 144, 807–16.Google Scholar
Carter, C., Trexler, J. H., & Churkin, M., 1980. Dating of graptolite zones by sedimentation rates: implications for rates of evolution. Lethaia 13, 279–87.Google Scholar
Churkin, M., Carter, C., & Johnson, B. R., 1977. Subdivision of Ordovician and Silurian time scale using accumulation rates of graptolitic shale. Geology 5, 452–6.2.0.CO;2>CrossRefGoogle Scholar
Fordham, B. G., 1992. Chronometric calibration of mid-Ordovician to Tournasian conodont zones: a compilation from recent graphic-correlation and isotope studies. Geological Magazine 129, 709–21.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., & Smith, D. C., 1990. A Geologic Time Scale 1989. Cambridge University Press, 263 pp.Google Scholar
Hutton, D. H. W., & Murphy, F. C., 1987. The Silurian of the Southern Uplands and Ireland as a successor basin to the end-Ordovician closure of Iapetus. Journal of the Geological Society, London 144, 765–72.Google Scholar
Jaeger, H., 1986. Graptolithina. In Přídolí- the Fourth Subdivision of the Silurian (eds Kriz, J., Jaeger, H., Paris, F. and Schonlaub, H. P.), pp. 291360. Jahrbuch der geologischen Bundesanstalt Sonderband, vol. 129.Google Scholar
Kleffner, M. A., 1989. A conodont-based Silurian chronostratigraphy. Geological Society of America Bulletin 101, 904–12.Google Scholar
Kneller, B. C., 1991. A foreland basin on the southern margin of Iapetus. Journal of the Geological Society, London 148, 207–10.CrossRefGoogle Scholar
Kobayashi, T., & Hamada, T., 1974. On the time-relation between the graptolite zones and the Dalmanitina Beds near the Ordovician-Silurian Boundary in Eurasia. Proceedings of the Japan Academy 50, 487.Google Scholar
Koren, T., 1986. Graptolity. In Tokrauskiy gorizont verkhnego Silura. Balkhashskii segment (ed. Abdulina, A. A.), pp. 1234. Akademiya Nauk Kazakhskoy SSR, Alma-Ata ‘Nauka’.Google Scholar
Loydell, D. K., 1991. The biostratigraphy and formational relationships of the Upper Aeronian and Lower Telychian (Llandovery, Silurian) formations of western Mid-Wales. Geological Journal 26, 209–44.Google Scholar
Nelsen, T. A., & Stanley, D. J., 1984. Variable deposition rates on the slope and rise off the mid-Atlantic States. Geo-Marine Letters 3, 3742.Google Scholar
Palmer, A. R., 1983. Decade of North American Geology (DNAG). Geologic time scale. Geology 11, 503–4.Google Scholar
Rickards, R. B., 1976. The sequence of Silurian graptolite zones in the British Isles. Geological Journal 11,153–88.Google Scholar
Rickards, R. B., 1989 a. Exploitation of graptoloid cladogenesis in Silurian stratigraphy. In A Global Standard for the Silurian System (eds Holland, C. H. and Bassett, M. G.), pp. 267–74. National Museum of Wales, Geological Series No. 9, Cardiff.Google Scholar
Rickards, R. B., 1989 b. Northern England. In A Global Standard for the Silurian System (eds Holland, C. H. and Bassett, M. G.), pp. 16131. National Museum of Wales, Geological Series No. 9, Cardiff.Google Scholar
Shaw, A. B., 1964. Time in Stratigraphy. New York: McGraw-Hill, 365 pp.Google Scholar
Snelling, N. J., 1985. An interim time-scale. In The Chronology of the Geological Record (ed. Snelling, N. J.), pp. 261–5. Geological Society of London Memoir no. 10.Google Scholar
Sweet, W. C., 1984. Graphic correlation of upper Middle and Upper Ordovician rocks, North American Midcontinent Province. In Aspects of the Ordovician System (ed. Bruton, D. L.), pp. 2335. Palaeontological Contributions from the University of Oslo, vol. 295. Oslo: Universitetsforlaget.Google Scholar
Sweet, W. C., 1988. Mohawkian and Cincinnatian chronostratigraphy. New York State Museum Bulletin 462, 8490.Google Scholar
Tucker, R. D., Krogh, T. E., Ross, R. J. Jr., & Williams, S. H., 1990. Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain. Earth and Planetary Science Letters 100, 51–8.Google Scholar
Williams, D. M., & Harper, D. A. T., 1988. A basin model for the Silurian of the Midland Valley of Scotland and Ireland. Journal of the Geological Society, London 145, 741–8.CrossRefGoogle Scholar
Zalasiewicz, J. A., 1990. Silurian graptolite biostratigraphy in the Welsh Basin. Journal of the Geological Society, London 147, 619–22.CrossRefGoogle Scholar