Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T05:26:55.636Z Has data issue: false hasContentIssue false

Fission track dates from two Galloway granites, Scotland

Published online by Cambridge University Press:  01 May 2009

A. J. Hurford
Affiliation:
Department of Geology, Birkbeck College, University of London, 7–15, Gresse Street, London W1P 1PA

Summary

Previous radiometric age determinations for the Criffell–Dalbeattie and Cairnsmore of Fleet Newer Granite intrusions are briefly reviewed. Thirteen fission-track dating results are presented for the co-existing accessory minerals sphene, zircon and apatite separated from the two granites. The mean sphene apparent age of 401±10 Ma and single zircon apparent age of 389±26 Ma are interpreted as the age of initial post-intrusion cooling of the granites. Results from apatite are discordant with those of sphene and zircon. Four determinations give a mean Upper Cretaceous apparent age of ∼ 80 Ma which is not readily interpreted. A single apatite determination upon a sample located adjacent to a basaltic dyke yielded a Tertiary age.

Type
Articles
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, K. 1968. Age relations and provenance of the Dalradian Series of Scotland. Bull. geol. Soc. Am. 79, 1167–94.CrossRefGoogle Scholar
Brown, P. E., Miller, J. A. & Grasty, R. L. 1968. Isotopic ages of late Caledonian granitic intrusions in the British Isles. Proc. Yorks. geol. Soc. 36, 251–76.CrossRefGoogle Scholar
Calk, L. C. & Naeser, C. W. 1973. The thermal effect of a basalt intrusion on fission tracks in quartz monzonite. J. Geol. 81, 189–98.CrossRefGoogle Scholar
Dunham, K. C., Fitch, F. J., Ineson, P. R., Miller, J. A. & Mitchell, J. G. 1968. The geochronological significance of argon-40/argon-39 age determinations on White Whin from the northern Pennine orefield. Proc. R. Soc. A 307, 251–66.Google Scholar
Fleischer, R. L. & Price, P. B. 1964. Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. cosmochim. Acta 28, 1705–14.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B. & Walker, R. M. 1965(a). Tracks of charged particles, in solids. Science, N.Y. 149, 383393.CrossRefGoogle ScholarPubMed
Fleischer, R. L., Price, P. B. & Walker, R. M. 1965(b). Effects of temperature, pressure and ionization on the formation and stability of fission tracks in minerals and glasses. J. geophys. Res. 70, 1497–502.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B. & Walker, R. M. 1975. Nuclear Tracks in Solids. University of California Press, Berkeley.CrossRefGoogle Scholar
Gardiner, C. I. & Reynolds, S. H. 1932. The Cairnsmore of Fleet Granite and its Metamorphic Aureole. Geol. Mag. 74, 289300.CrossRefGoogle Scholar
Greig, D. C. 1971. The South of Scotland. Br. reg. geol. geol. Surv. U.K., 3rd edn.Google Scholar
Harper, C. T. 1967. The geological interpretation of potassium–argon ages of metamorphic rocks from the Scottish Caledonides. Scott. J. Geol. 3, 4666.CrossRefGoogle Scholar
Hurford, A. J. (In the press). A preliminary fission track dating survey of Caledonian ‘Newer and Last Granites’ from the Highlands of Scotland. Scott. J. Geol.Google Scholar
Hurford, A. J. & Gleadow, A. J. W. 1977. Calibration of fission track dating parameters. Nucl. Track Detection 1, 41–8.CrossRefGoogle Scholar
Krishnaswami, S., Lal, D. & Prabhu, N. 1974. Characteristics of fission tracks in zircons: applications to geochronology and cosmology. Earth Planet. Sci. Lett. 22, 51–9.CrossRefGoogle Scholar
Macgregor, M. 1937. The western part of the Criffell–Dalbeattie Igneous Complex. Q. Jl geol. Soc. Lond. 93, 457–84.CrossRefGoogle Scholar
Mercy, E. L. P. 1965. Caledonian igneous activity. In The Geology of Scotland(ed. Craig, G. Y.). Edinburgh: Oliver and Boyd.Google Scholar
Miller, J. A. & Brown, P. E. 1965. Potassium–argon age studies in Scotland. Geol. Mag. 102, 106–34.CrossRefGoogle Scholar
Naeser, C. W. 1967. The use of apatite and sphene for fission track age determinations. Bull. geol. Soc. Am. 78, 1523–26.CrossRefGoogle Scholar
Naeser, C. W. & Faul, H. 1969. Fission track annealing in apatite and sphene. J. geophys. Res. 74, 705–10.CrossRefGoogle Scholar
Parslow, G. R. 1968. The physical and structural features of the Cairnsmore of Fleet granite and its aureole. Scott. J. geol. 4, 91108.CrossRefGoogle Scholar
Phillips, W. J. 1956. The Criffell–Dalbeattie Granodiorite Complex. Q. Jl geol. Soc. Lond. 112, 221–40.CrossRefGoogle Scholar
Price, P. B. & Walker, R. M. 1963. Fossil tracks of charged particles in mica and the age of minerals. J. geophys. Res. 68, 4847–61.CrossRefGoogle Scholar
Read, H. H. 1961. Aspects of Caledonian magmatism in Britain. Proc. Lpool Manchr. geol. Soc. 2, 653–86.CrossRefGoogle Scholar