Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T14:42:34.931Z Has data issue: false hasContentIssue false

Late Miocene magmatic activity in the Attic-Cycladic Belt of the Aegean (Lavrion, SE Attica, Greece): implications for the geodynamic evolution and timing of ore deposition

Published online by Cambridge University Press:  15 July 2009

ANTHI LIATI*
Affiliation:
Institute of Isotope Geology and Mineral Resources, ETH Zurich, Clausiusstrasse 25, 8092 Zurich, Switzerland
NIKOS SKARPELIS
Affiliation:
Department of Geology & Geoenvironment, University of Athens, Panepistimiopoli, 15784 Zografou, Athens, Greece
GEORGIA PE-PIPER
Affiliation:
Department of Geology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
*
*Author for correspondence: anthi.liati@empa.ch

Abstract

Numerous post-metamorphic Miocene granitoids occur in the area of Lavrion, SE Attica, at the western end of the Attic-Cycladic Belt of the Aegean. U–Pb ion microprobe-dating (SHRIMP) of zircon from a granitoid sill in the hanging-wall of a regional detachment fault reveals two distinct ages: (1) 11.93 ± 0.41 Ma, obtained from inherited zircon cores with metamorphic characteristics (homogeneous cathodoluminescence, low Th/U ratios) and granulite-type (round/resorbed) morphology. This age is interpreted as the time of a likely granulite-facies metamorphism of the precursor rock. (2) 8.34 ± 0.20 Ma, obtained by oscillatory zoned zircon domains with cathodoluminescence and Th/U characteristics typical for magmatic origin. This age is interpreted as the crystallization time of the granitoid sills. Although a granulite-facies metamorphic event has not been recognized so far for rocks of the Attic-Cycladic Belt, it seems to be the most plausible hypothesis to explain both the zircon systematics and age results. This hypothesis is consistent with an extensional regime predominating in the Aegean from Late Miocene times onwards. A possible granulite-facies metamorphism can be related to magmatic underplating at the initial stages of extension, setting an upper age of c. 12 Ma for the operation of the detachment fault. The 8.34 ± 0.20 Ma zircon crystallization age is, statistically, marginally different to a previous K–Ar feldspar date of hornblende-bearing dykes (9.4 ± 0.3 Ma) and identical to a 8.27 ± 0.11 Ma K–Ar biotite date of the main granitoid stock in the area, thus being generally consistent with prior age constraints from the region. Operation of the detachment fault in the Lavrion area is therefore bracketed between c. 11.9 Ma and at least 8.3 Ma. This time range is in line with the time of operation of detachment faults suggested previously for the Cycladic islands. Carbonate-hosted replacement-type massive sulphide Pb–Zn–Ag ores are spatially associated with the detachment fault and related extensional structures in the Basal Unit. Therefore, these Pb–Zn–Ag ores probably also formed within the above time span of c. 11.9 to at least 8.3 Ma. U–Pb ion microprobe (SHRIMP) dating of zircon from an orthogneiss within the metaclastic subunit of the Basal Unit in Lavrion yielded a protolith age of 240 ±4 Ma, consistent with ages of Triassic volcanism elsewhere in Greece.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: EMPA, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600, Dübendorf, Switzerland

References

Altherr, R., Schliestedt, M., Okrusch, M., Seidel, E., Kreuzer, H., Harre, W., Lenz, H., Wendt, I. & Wagner, G. A. 1979. Geochronology of high-pressure rocks on Sifnos (Cyclades, Greece). Contributions to Mineralogy and Petrology 70, 245–55.CrossRefGoogle Scholar
Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G. A., Keller, J., Harre, W. & Hohndorf, A. 1982. A Late Oligocene/Early Miocene high temperature belt in the Attic-Cycladic crystalline complex (SE Pelagonian, Greece). Geologisches Jahrbuch E23, 97164.Google Scholar
Altherr, R. & Siebel, W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology 143, 397415.CrossRefGoogle Scholar
Anders, B., Reischmann, T. & Kostopoulos, D. 2007. Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. International Journal of Earth Sciences 96, 639–61.CrossRefGoogle Scholar
Andriessen, P. A. M., Banga, G. & Hebeda, E. H. 1987. Isotopic age study of pre-Alpine rocks in the basal units on Naxos, Sikinos and Ios, Greek Cyclades. Geologie en Mijnbouw 66, 314.Google Scholar
Avigad, D., Garfunkel, Z., Jolivet, L. & Azanon, J. M. 1997. Back arc extension and denudation of Mediterranean eclogites. Tectonics 16, 924–41.CrossRefGoogle Scholar
Baltatzis, E. 1996. Blueschist-to-greenschist transition and the P–T path of prasinites from the Lavrion area, Greece. Mineralogical Magazine 60, 551–61.CrossRefGoogle Scholar
Baziotis, I., Mposkos, E. & Perdikatsis, V. 2006. Reconstruction and correlation of the exhumation history of high-pressure/low-temperature metamorphic rocks from Attica. International Conference Neogene Magmatism of the Central Aegean and Adjacent Areas (NECAM): Petrology, Tectonics, Geodynamics, Mineral Resources and Environmenst, Sept. 11–13, 2006, Milos, Cyclades, Greece. Book of Abstracts, p. 28.Google Scholar
Baziotis, I., Mposkos, E. & Skarpelis, N. 2006. Raman micro-spectrometry of carbonaceous material using the 633nm line of a He–Ne laser: application to the metamorphic rocks of Attica. European Geosciences Union, Geophysical Research Abstracts 8, 10882.Google Scholar
Bonneau, M. 1984. Correlation of the Hellenide nappes in the south-east Aegean and their tectonic reconstruction. In Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 517–27. Geological Society of London, Special Publication no. 17.Google Scholar
Boronkay, K. & Doutsos, T. 1994. Transpression and transtension within different structural levels in the central Aegean region. Journal of Structural Geology 16, 1555–73.CrossRefGoogle Scholar
Brichau, S., Ring, U., Ketcham, R. A., Carter, A. Stockli, D. & Brunel, M. 2006. Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology. Earth and Planetary Science Letters 24, 293306.CrossRefGoogle Scholar
Bröcker, M. & Keasling, A. 2006. Ionprobe U–Pb zircon ages from the high-pressure/low-temperature mėlange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. Journal of Metamorphic Geology 24, 615–31.CrossRefGoogle Scholar
Bröcker, M. & Pidgeon, R. T. 2007. Protolith Ages of Meta-igneous and Metatuffaceous Rocks from the Cycladic Blueschist Unit, Greece: Results of a Reconnaissance U–Pb Zircon Study. The Journal of Geology 115, 8398.CrossRefGoogle Scholar
Bröcker, M., Kreuzer, H., Matthews, A. & Okrusch, M. 1993. 39Ar/40Ar and oxygen isotope studies of polymetamorphism from Tinos island, Cycladic blueschist belt, Greece. Journal of Metamorphic Geology 11, 223–40.CrossRefGoogle Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zichao, Z. & Guogan, M. 1992. Zircon U–Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.CrossRefGoogle Scholar
Dürr, S., Altherr, R., Keller, J., Okrusch, M. & Seidel, E. 1978. The median Aegean crystalline belt: stratigraphy, structure, metamorphism, magmatism. In Alps, Apennines, Hellenides (eds Cloos, H, Roeder, D. & Schmidt, K.), pp. 455–76. Stuttgart: Schweizerbart.Google Scholar
Dubois, R. & Bignot, G. 1979. Presence d'un “hard-ground” nummulitique au sommet de la serie cretacée d'Almyropotamos (Eubée méridionale, Grèce). Conséquences. Comptes Rendus de l’ Academie des Sciences de Paris 289 D, 993–5.Google Scholar
Faure, M., Bonneau, M. & Pons, J. 1991. Ductile deformation and syntectonic granite emplacement during the late Miocene extension of the Aegean (Greece). Bulletin Société Géologique de France 162, 311.CrossRefGoogle Scholar
Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A. & Villari, L. 1984. Tertiary to Quaternary evolution of volcanism in the Aegean region. In The geological evolution of the eastern Mediterranean (eds Robertson, A. H. F. & Dixon, J. E.), pp. 687–99. Geological Society of London, Special Publication no. 17.Google Scholar
Henjes-Kunst, F. & Kreuzer, H. 1982. Isotopic dating of pre-alpidic rocks from the island of Ios (Cyclades, Greece). Contributions to Mineralogy and Petrology 80, 245–53.CrossRefGoogle Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In Zircon (eds Hanchar, M. J. & Hoskin, P. W. O.), pp. 27–62. Reviews in Mineralogy and Geochemistry 53.Google Scholar
Godfriaux, I. 1968. Etude Géologique de la région de l'Olympe, Grèce. Annales Géologiques des Pays Helléniques 19, 1271.Google Scholar
Jansen, J. B. H. & Schuiling, R. D. 1976. Metamorphism on Naxos: Petrology and geothermal gradients. American Journal of Science 276, 1225–53.CrossRefGoogle Scholar
Jolivet, L., Faccenna, C., Goffė, B., Burov, E. & Agard, F. 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. American Journal of Science 303, 353409.CrossRefGoogle Scholar
Katsikatsos, G. 1969. Les formations triassiques de l'Eubée centrale. Annales Géologiques des Pays Helléniques 22, 6276.Google Scholar
Katsikatsos, G., Migiros, G., Triantafyllis, M. & Mettos, A. 1986. Geological structure of Internal Hellenides (E. Thessaly – SW Macedonia, Euboea – Attica – Northern Cyclades Islands and Lesbos). Geological and Geophysical Research, Special Issue. I.G.M.E., Athens.Google Scholar
Keay, S., Lister, G. & Buick, I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342, 275312.CrossRefGoogle Scholar
Kumerics, C., Ring, U., Brichau, S., Glodny, J. & Monié, P. 2005. The extensional Messaria shear zone and associated brittle detachment faults, Aegean Sea, Greece. Journal of the Geological Society 162, 701–21.CrossRefGoogle Scholar
Liati, A., Gebauer, D. & Fanning, M. C. 2000. U–Pb SHRIMP dating of zircon from the Novate granite (Bergell, Central Alps): evidence for Oligocene–Miocene magmatism, Jurassic–Cretaceous continental rifting and opening of the Valais trough. Schweizerische Mineralogische Petrographische Mitteilungen 80, 305–16.Google Scholar
Lee, J. & Lister, G. S. 1992. Late Miocene ductile extension and detachment faulting, Mykonos, Greece. Geology 20, 121–4.2.3.CO;2>CrossRefGoogle Scholar
Leleu, M. & Neumann, M. 1969. L'âge des formations d'Attique: du paleozoique au mesozoique. Comptes Rendu de l'Academie des Sciences de Paris 268, 1361–3.Google Scholar
Lister, G. S., Banga, G. & Feenstra, A. 1984. Metamorphic core complexes of the Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12, 221–5.2.0.CO;2>CrossRefGoogle Scholar
Ludwig, K. 2000. User's Manual for Isoplot/Ex, version 2.4. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication no. 1a, 53 pp.Google Scholar
Marinos, G. P. & Petrascheck, W. E. 1956. Laurium. Geological & Geophysical Research 4/1, pp. 1247. Institute for Geology and Subsurface Research.Google Scholar
Massonne, H. J. & Schreyer, W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contributions to Mineralogy and Petrology 96, 212–24.CrossRefGoogle Scholar
Matthews, A. & Schliestedt, M. 1984. Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece.Contributions to Mineralogy and Petrology 88, 150–63.CrossRefGoogle Scholar
McKenzie, D. 1978. Active tectonics of the Alpine–Himalayan belt: The Aegean Sea and surrounding regions. Royal Astronomical Society Geophysical Journal 55, 217–54.CrossRefGoogle Scholar
Mountrakis, D., Eleftheriadis, G., Christofides, G., Kilias, A. & Sapountzis, E. 1987. Silicic Metavolcanics in the Western Pelagonian Margin of Greece Related to the Opening of Neo-Tethys. Chemie der Erde 47, 167–79.Google Scholar
Okrusch, M. & Bröcker, M. 1990. Eclogite facies rocks in the Cycladic blueschist belt, Greece: A review. European Journal of Mineralogy 2, 451–78.CrossRefGoogle Scholar
Pe-Piper, G. 2000. Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece. European Journal of Mineralogy 12, 859–75.CrossRefGoogle Scholar
Pe-Piper, G. & Piper, D. J. W. 2002. The igneous rocks of Greece: anatomy of an orogen. Beitrage zur Regionalen Geologie der Erde. Berlin, Stuttgart: Gebrüder Borntrager, 573 pp.Google Scholar
Pe-Piper, G., Kotopouli, C. N. & Piper, D. J. W. 1997. Granitoid rocks of Naxos, Greece: regional geology and petrology. Geological Journal 32, 153–71.3.0.CO;2-1>CrossRefGoogle Scholar
Pe-Piper, G., Piper, D. J. W. & Matarangas, D. 2002. Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos 60, 4766.CrossRefGoogle Scholar
Ring, U. & Reischmann, T. 2002. The weak and superfast Cretan detachment, Greece: exhumation at subduction rates in extruding wedges. Journal of the Geological Society, London 159, 225–8.CrossRefGoogle Scholar
Ring, U., Layer, P. W. & Reischmann, T. 2001. Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: Evidence for large-scale magnitude displacement on the Cretan detachment. Geology 29, 395–8.2.0.CO;2>CrossRefGoogle Scholar
Shaked, Y., Avigad, D. & Garfunkel, Z. 2000. Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece). Geological Magazine 137, 367–80.CrossRefGoogle Scholar
Skarpelis, N. & Gilg, A. H. 2006. Miocene extensional fault-controlled mineralization in the central Aegean (Mykonos, Cyclades): deposition from a two-stage hydrothermal system? International Conference Neogene Magmatism of the Central Aegean and Adjacent Areas (NECAM): Petrology, Tectonics, Geodynamics, Mineral Resources and Environment. Sept. 11–13, 2006, Milos, Cyclades, Greece, p. 36.Google Scholar
Skarpelis, N. 2007. The Lavrion deposit: geology, mineralogy and minor elements chemistry. Neues Jahrbuch Mineralogie, Abhandlungen 183/3, 722–94.Google Scholar
Skarpelis, N., Tsikouras, B. & Pe-Piper, G. 2008. The Miocene igneous rocks in the Basal Unit of Lavrion (SE Attica, Greece): petrology and geodynamic implications. Geological Magazine 145, 115.CrossRefGoogle Scholar
Sommerauer, J. 1974. Trace elements distribution patterns and mineralogical stability of zircons – An application for combined electron microprobe techniques. Electron Microscopy Society of Southern Africa, Proceedings 4, 71–2.Google Scholar
Stern, R. 1997. The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U–Th–Pb age determinations and performance evaluation. Radiogenic Age and isotope studies: Report 10. Geological Survey of Canada, Current Research, 1–31.Google Scholar
Stern, R. A. & Amelin, Y. 2003. Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chemical Geology 197, 132.CrossRefGoogle Scholar
Tera, F. & Wasserburg, G. J. 1972. U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 14, 281304.CrossRefGoogle Scholar
Tomaschek, F., Kennedy, A. K., Villa, I. M., Lagos, M. & Ballhaus, C. 2003. Zircons from Syros, Cyclades, Greece – Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology 44, 19772002.CrossRefGoogle Scholar
Vavra, G., Gebauer, D., Schmid, R. & Compston, W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology 122, 337–58.CrossRefGoogle Scholar
Vavra, G., Schmid, R. & Gebauer, D. 1999. Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology 134, 380404.CrossRefGoogle Scholar
Wijbrans, J. R. & McDougall, I. 1988. Metamorphic evolution of the Attic-Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. Journal of Metamorphic Geology 6, 571–94.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb Geochronology by Ion Microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds McKibben, M. A., Shanks III, W. C., & Ridley, W. I.), pp. 1–35. Reviews in Economic Geology 7.Google Scholar
Williams, I. S., Buick, S. & Cartwright, I. 1996. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. Journal of Metamorphic Geology 14, 2947.CrossRefGoogle Scholar