Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T06:50:27.947Z Has data issue: false hasContentIssue false

Late Permian to Triassic isotope composition of sulfates in the Eastern Alps: palaeogeographic implications

Published online by Cambridge University Press:  01 December 2016

ANA-VOICA BOJAR*
Affiliation:
Department of Geography and Geology, Salzburg University, Hellbrunnerstrasse 34, 5020 Salzburg, Austria Department of Geoscience, Studienzentrum Naturkunde, Universalmuseum Joanneum, Weinzöttlstraße 16, 8045, Graz, Austria
STANISLAW HAŁAS
Affiliation:
Mass Spectrometry Laboratory, Institute of Physics, Maria Curie-Skłodowska University, 20–031 Lublin, Poland
HANS-PETER BOJAR
Affiliation:
Department of Geoscience, Studienzentrum Naturkunde, Universalmuseum Joanneum, Weinzöttlstraße 16, 8045, Graz, Austria
ANDRZEJ TREMBACZOWSKI
Affiliation:
Mass Spectrometry Laboratory, Institute of Physics, Maria Curie-Skłodowska University, 20–031 Lublin, Poland
*
Author for correspondence: ana-voica.bojar@sbg.ac.at

Abstract

Late Permian to Triassic phases from the evaporite deposits of the Northern Calcareous Alps (NCA) and Central Alpine Mesozoic (CAM) were analysed for sulfur and oxygen isotope compositions. For the Upper Permian, most of the δ34S values are in the 11 to 12‰ range. Röt-type sulfates of Early Triassic age are characterized by a heavy sulfur isotopic composition of c. 26‰. The spatial compilation of the available data concerning the isotopic composition of Röt-type sulfates demonstrates that these evaporites are distributed over the entire area of the NCA. Their occurrences are associated with Early Triassic high-temperature conditions of the seawater and a widespread anoxia. The development of sulfates of Carnian–Norian age situated in the CAM is more modest; sulfates are characterized by a δ34S value of c. 15‰. The δ18O values show a broader distribution from 9 to 22‰, related to several factors such as type of deposit, recrystallization processes and bacterial sulfate reduction. The sulfate–sulfide thermometer applied to samples from NCA deposits indicates a thermal overprint of between 215 and 315°C. Microbeam measurements support zonation of minor elements in sphalerite. Sphalerite microstructure indicates thermal overprinting, with no microbial structure being preserved.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Luo, G. M., Song, H. S., Lyons, T. W. & Canfield, D. C. 2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences 12, 2131–51.Google Scholar
Ault, W. U. & Kulp, J. L. 1959. Isotopic geochemistry of sulphur. Geochimica et Cosmochimica Acta 16, 201–35.CrossRefGoogle Scholar
Bauer, F. K. 1967. Gipslagerstätten im zentralalpinen Mesozoikum (Semmering, Stanzertal). Verhandlungen der Geologischen Bundesanstalt 1967, 7090.Google Scholar
Berner, R. A. 1985. Sulfate reduction, organic matter decomposition and pyrite formation. Philosophical Transactions of the Royal Society of London A 315, 2538.Google Scholar
Boschetti, T. 2013. Oxygen isotope equilibrium in sulfate-water systems: a revision of geothermometric applications in low-enthalpy systems. Journal of Geochemical Exploration 124, 92100.CrossRefGoogle Scholar
Boschetti, T., Cortecci, G., Toscani, L. & Iacumin, P. 2011. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from northern Apennines (Italy): paleogeographic and hydrogeochemical implications. Geologica Acta 9, 129–47.Google Scholar
Böttcher, M. E., Brumsack, H. J. & Dürselen, D. 2007. The isotopic composition of modern seawater sulfate: I. Coastal waters with special regard to the North Sea. Journal of Marine Geology 67, 7382.Google Scholar
Canfield, D. E. 2001. Biogeochemistry of sulphur isotopes. In Stable Isotope Geochemistry (eds Valley, J. W., Cole, D. R.), pp. 579606. Reviews in Mineralogy & Geochemistry 43.Google Scholar
Chiba, H. & Sakai, H. 1985. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochimica et Cosmochimica Acta 49, 9931000.Google Scholar
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28, 199260.CrossRefGoogle Scholar
Cortecci, G., Reyes, E., Berti, G. & Casati, P. 1981. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology 34, 6579.Google Scholar
Erkan, E. 1989. Die Sulfatlagerstätten der postvariszischen Transgressionsserie in den Ostalpen. Nachrichten der Deutschen Geologischen Gesellschaft 41, 90–1.Google Scholar
Fanlo, I. & Ayora, C. 1998. The evolution of the Lorraine evaporite basin: implications for the chemical and isotope composition of the Triassic ocean. Chemical Geology 146, 135–54.Google Scholar
Flügel, H. W. & Neubauer, F. 1984. Steiermark Geologie der österreichischen Bundesländer in kurzgefassten Einzeldarstellungen. Vienna: Geologische Bundesanstalt, 127 pp.Google Scholar
Fritz, P., Basharmal, G. M., Drimmie, R. J., Ibsen, J. & Qureshi, R. M. 1989. Oxygen isotope exchange between sulfate and water during bacterial reduction of sulfate. Chemical Geology, Isotope Geoscience Section 79, 99105.Google Scholar
García-Veigas, J., Cendón, D. I., Pueyo, J. J. & Peryt, T. M. 2011. Zechstein saline brines in Poland, evidence of overturned anoxic ocean during the Late Permian mass extinction event. Chemical Geology 290, 189201.Google Scholar
Gawlick, H.-J., Schlagintweit, F. & Suzuki, H. 2007. Die Ober-Jura bis Unter-Kreide Schichtfolge des Gebietes Höherstein-Sandling (Salzkammergut, Österreich) – implikationen zur rekonstruktion des Block-Puzzles der zentralen Nördlichen Kalkalpen, der Gliederung der karbonatischen Radiolaritflyschbecken und der Entwicklung der Plassen-Karbonatplattform. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 243, 170.Google Scholar
Gawlick, H.-J., Lein, R., Piros, O. & Pytel, C. 1999. Zur stratigraphie und tektonik des Hallein – Bad Dürrnberger Salzberges – neuergebnisse auf der basis von stratigraphischen und faziellen daten (Nördliche Kalkalpen, Salzburg). Abhandlungen der Geologischen Bundesanstalt 56 (2), 6990.Google Scholar
Gawlick, H.-J., Lein, R., Schlagintweit, F., Suzuki, H. & Wegerer, E. 2001. Der Hallstätter Salzberg und sein geologischer rahmen – geschichte und stand der erforschung, interpretationen und neue ergebnisse. Berichte der Geologischen Bundesanstalt 56, 45–9.Google Scholar
Gonfiantini, R. & Fontes, J., CH. 1963. Oxygen isotopic fractionation in the water of crystallisation of gypsum. Nature 200, 644–6.Google Scholar
Götzinger, M. A. & Pak, E. 1983. Zur schwefelisotopenverteilung in sulfid- und sulfatmineralen triadischer Gesteine der Kalkalpen, Österreich. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten Österreichs 29, 191–8.Google Scholar
Grinenko, V. A. & Ustinov, V. I. 1991. Dynamics of sulfur and oxygen isotope fractionation during bacterial reduction. Geochemistry International 28, 2130.Google Scholar
Haditsch, J. G. 1968. Bemerkungen zu einigen mineralien (Devillin, Bleiglanz, Magnesit) aus der Gips-Anhydrit-Lagerstätte Wienern am Grundlsee. Archiv für Lagerstättenforschung in den Ostalpen 7, 5476.Google Scholar
Hagenguth, G. 1988. Die Gipsvorkommen bei Edelsdorf im Stanzertal (Steiermark). Archiv für Lagerstättenforschung der Geologischen Bundesanstalt 9, 4758.Google Scholar
Hałas, S. 1987. Oxygen and sulphur isotope ratios of sulphate minerals in native sulphur deposits. Isotopenpraxis 23 (7), 282–3.Google Scholar
Hałas, S. & Pluta, I. 2000. Empirical calibration of isotope thermometer δ18O (SO4 2-) – δ18O(H2O) for low temperature brines. In ESIR Isotope Workshop V, 1–6 July 2000, Kraków, Poland, Book of Abstracts, pp. 68–71.Google Scholar
Hałas, S. & Szaran, J. 2001. Improved thermal decomposition of sulfates to SO2 and mass spectrometric determination of δ34S of IAEA SO-5, IAEA SO-6 and NBS-127 sulfate standards. Rapid Communications in Mass Spectrometry 15, 1618–20.Google Scholar
Hałas, S. & Szaran, J. 2004. Use of Cu2O–NaPO3 mixtures for SO2 extraction from BaSO4 for sulphur isotope analysis. Isotopes in Environmental and Health Studies 40, 229–31.Google Scholar
Hałas, S., Szaran, J., Czarnacki, M. & Tanweer, A. 2007. Refinements in BaSO4 to CO2 preparation and δ18O calibration of the sulphate standards NBS-127, IAEA SO-5 and IAEA SO-6. Geostandard Geoanalytical Research 31, 61–8.Google Scholar
Hardie, L. A. 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24, 279–83.Google Scholar
Holland, H. D. 2005. Sea level, sediments and the composition of seawater. American Journal of Science 305, 220–39.Google Scholar
Holser, W. T. 1977. Catastrophic chemical events in the history of the ocean. Nature 267, 403–8.CrossRefGoogle Scholar
Holser, W. T. & Kaplan, I. R. 1966. Isotope geochemistry of sedimentary sulfates. Chemical Geology 1, 93135.Google Scholar
Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. 1979. Isotope geochemistry of oxygen in the sedimentary sulfate cycle. Chemical Geology 25, 117.Google Scholar
Kajiwara, Y. & Krouse, H. R. 1971. Sulfur isotope partitioning in metallic sulfide systems. Canadian Journal of Earth Sciences 8, 1397–408.Google Scholar
Kampschulte, A., Buhl, D. & Strauss, H. 1998. The sulfur and strontium isotopic compositions of Permian evaporites from the Zechstein basin, northern Germany. Geologische Rundschau 87, 192–9.Google Scholar
Kampschulte, A. & Strauss, H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204, 255–86.CrossRefGoogle Scholar
Kirchner, E. 1987. Die mineral- und gesteinsvorkommen in den Gipslagerstätten der Lammermasse, innerhalb der Hallstattzone, Salzburg. Jahrbuch Haus der Natur 10, 156–67.Google Scholar
Kirchner, E. C. 1979. Pumpellyitführende Kissenlavabreccien in der Gips-Anhydritlagerstätte von Wienern am Grundlsee, Steiermark. Tschermaks Mineralogische und Petrographische Mitteilungen 26, 149–62.Google Scholar
Klaus, W. 1965. Zur einstufung alpiner salztone mittels sporen. Verhandlungen der Geologischen Bundesanstalt, Sonderheft G, 228–92.Google Scholar
Klaus, W. & Pak, E. 1974. Neue beiträge zur datierung von evaporiten des Ober-Perm. Carinthia II 164 (84), 7985.Google Scholar
Kölbl, J. & Gawlick, H.-J. 1999. Bericht über geologische aufnahmen sowie stratigraphische und fazielle untersuchungen im bereich der meßnerin auf den blättern 101 eisenerz und 102 Aflenz kurort. Jahrbuch der Geologischen Bundesanstalt 142, 346–8.Google Scholar
Kovalevych, V., Peryt, T. M., Beer, W., Geluk, M. & Hałas, S. 2002. Geochemistry of Early Triassic seawater as indicated by study of the Röt halite in the Netherlands, Germany, and Poland. Chemical Geology 182, 549–63.CrossRefGoogle Scholar
Kovalevich, V. M., Peryt, T. M. & Petrichenko, O. I. 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology 106, 695712.Google Scholar
Kucha, H., Schroll, E., Raith, J. G. & Hałas, S. 2010. Microbial sphalerite formation in carbonate-hosted Zn–Pb ores, Bleiberg, Austria: micro- to nanotextural and sulfur isotope evidence. Economic Geology 105, 1005–23.CrossRefGoogle Scholar
Leitner, C. & Neubauer, F. 2011. Tectonic significance of structures within the salt deposits Altaussee and Berchtesgaden–Bad Dürrnberg, Northern Calcareous Alps. Austrian Journal of Earth Sciences 104 (2), 221.Google Scholar
Leitner, C., Neubauer, F., Genser, J., Borojevic-Sostaric, B. & Rantitsch, G. 2013. 40Ar/39Ar ages of recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences (eds Jordan, F., Mark, D. F. & Verati, C.), pp. 207–44. Geological Society of London, Special Publication no. 378.Google Scholar
Lloyd, R. M. 1968. Oxygen isotope behaviour in the sulfate-water system. Journal of Geophysical Research 73, 6099–110.Google Scholar
Longinelli, A. 1983. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In The Marine Environment (eds Fritz, P. & Fonts, J. C.), pp. 219–55. Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier.Google Scholar
Longinelli, A. & Craig, H. 1967. Oxygen-18 variation in sulphate ions in sea water and saline lakes. Science 146, 56–9.Google Scholar
Longinelli, A. & Flora, O. 2007. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: palaeoenvironmental implications. Chemical Geology 245, 275–84.Google Scholar
Lowenstein, T. K., Hardie, L. A., Timofeeff, M. N. & Demicco, R. V. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31, 857–60.Google Scholar
Lowenstein, T. K., Kendal, B. & Anbar, A. D. 2014. The geologic history of seawater. In The Oceans and Marine Geochemistry, 2nd Edition (eds Holland, H. D. & Turekian, K. K.), pp. 569622. Treatise on Geochemistry, Vol. 8. Amsterdam: Elsevier.Google Scholar
Machel, H. G., Krouse, H. R. & Sassen, R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulphate reduction. Applied Geochemistry 110, 373–9.Google Scholar
McCrea, J. M. 1950. On the isotopic geochemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849–57.Google Scholar
Mizutani, Y. 1971. An improvement in the carbon reduction method for the isotopic analysis of sulfates. Geochemical Journal 5, 69–7.Google Scholar
Niedermayr, G., Beran, A. & Brandstätter, F. 1989. Diagenetic type magnesites in the Permo-Scythian rocks of the Eastern Alps, Austria. In Magnesite Geology, Mineralogy, Geochemistry, Formation of Mg-Carbonates (ed. Möller, P.), pp. 3559. Monograph Series on Mineral Deposits. Berlin, Stuttgart: Gebrüder Bornträger.Google Scholar
Nielsen, H. 1965. Schwefelisotope im marinen Kreislauf und das δ34S der früheren Meere. Geologische Rundschau 55, 160–72.Google Scholar
Nielsen, H. 1989. Local and global aspects of the sulphur isotope age curve of oceanic sulphate. In Evolution of the Global Biogeochemical Sulphur Cycle (eds Brimblecombe, P., Lein, A. Yu), pp. 5764. SCOPE 39. New York: John Wiley & Sons Ltd.Google Scholar
Ohmoto, H. 1986. Stable isotope geochemistry of ore deposits. In Stable Isotopes in High Temperature Geological Processes (eds Valley, J. W., Taylor, H. P. Jr. & O'Neil, J. R.), pp. 491560. Reviews in Mineralogy 16.Google Scholar
Ohmoto, H. & Rye, R. O. 1979. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.), pp. 517612. New York: John Wiley & Sons Ltd.Google Scholar
Pak, E. 1974. Schwefelisotopenuntersuchungen am Institut für Radiumforschung und Kernphysik I. Anzeiger der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, 166174.Google Scholar
Pak, E. 1978. Schwefelisotopenuntersuchungen am Institut für Radiumforschung und Kernphysik II. Anzeiger der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, 622.Google Scholar
Pak, E. 1981. Schwefelisotopenuntersuchungen am Institut für Radiumforschung und Kernphysik III. Anzeiger der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, 187–98.Google Scholar
Pak, E. & Schauberger, O. 1981. Die geologische Datierung der ostalpinen Salzlagerstätten mittels Schwefelisotopenuntersuchungen. Verhandlungen der Geologischen Bundesanstalt 1981, 185–92.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–9.Google Scholar
Paytan, A., Kastner, M., Campell, D. & Thiemens, M. H. 2004. Seawater sulfur isotope fluctuations in the Cretaceous. Science 304, 1663–5.Google Scholar
Peryt, T. M., Hałas, S. & Hryniv, S. P. 2010. Sulphur and oxygen isotope signatures of late Permian Zechstein anhydrites, West Poland: seawater evolution and diagenetic constraints. Geological Quarterly 54, 387400.Google Scholar
Postl, W. 1990. Enargit und Parnauit aus dem Gips- und Anhydritbergbau Tragöß-Oberort, Steiermark. In Neue Mineralfunde aus Österreich XXXIX (eds Niedermayr, G., Brandstätter, F., Kandutsch, G., Kirchner, E., Moser, B. & Postl, W.), p. 277. Carinthia II 180 (100), 245–88.Google Scholar
Prokoph, A., Shields, G. A. & Veizer, J. 2008. Compilation and time series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews 87, 113–33.Google Scholar
Pueyo, E. L., Mauritsch, H. J., Gawlick, H.-J., Scholger, R. & Frisch, W. 2007. New evidence for block and thrust sheet rotations in the central northern Calcareous Alps deduced from two pervasive remagnetization events. Tectonics 26, doi: 10.1029/2006TC001965.Google Scholar
Raab, M. & Spiro, B. 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology 86, 323–33.Google Scholar
Rafter, T. A. & Mizutani, Y. 1967. Preliminary study of variations of oxygen and sulphur isotopes in natural sulphates. Nature 216, 1000–2.Google Scholar
Rees, C. E., Junkins, W. J. & Monster, J. 1978. The sulphur isotopic composition of ocean water sulphate. Geochimimica et Cosmochimica Acta 42, 377–82.Google Scholar
Rey, K., Amiot, R., Fourel, F., Rigaudier, T., Abdala, F., Day, M. O., Fernandez, V., Fluteau, F., France-Lanord, C., Rubidge, B. S., Smith, R. M., Viglietti, P. A., Zipfel, B. & Lécuyer, C. 2016. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa. Gondwana Research 37, 384–96.Google Scholar
Sakai, H. 1968. Isotopic proprieties of sulfur compounds in hydrothermal processes. Geochemical Journal 2, 2949.CrossRefGoogle Scholar
Schauberger, O. 1986. Bau und Bildung der Salzlagerstätten des ostalpinen Salinars. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt 7, 217–54.Google Scholar
Schorn, A. & Neubauer, F. 2011. Emplacement of an evaporitic melange nappe in central Northern Calcareous Alps: evidence from the Moosegg klippe (Austria). Journal of Austrian Earth Sciences 104, 2246.Google Scholar
Schorn, A., Neubauer, F., Bernroider, M. & Genser, J. 2012. The sulphatic Haselgebirge evaporite mélange of the Moosegg quarry, central Northern Calcareous Alps. Field Guide, Pangeo, 20 pp.Google Scholar
Scholle, P. A. 1995. Carbon and sulfur isotope stratigraphy of the Permian and adjacent intervals. In The Permian of Northern Pangea, Vol. 1 (eds Scholle, P. A., Peryt, T. M. & Ulmer Scholle, D. S.), pp. 133149. Berlin: Springer.Google Scholar
Schorn, A., Neubauer, F., Genser, J. & Bernroider, M. 2013. The Haselgebirge evaporitic mélange in central Northern Calcareous Alps (Austria): part of the Permian to Lower Triassic rift of the Meliata ocean? Tectonophysics 583, 2848.Google Scholar
Seal, R. R., Alpers, C. N. & Rye, R. O. 2000. Stable isotope systematics of sulfate minerals. In Sulphate Minerals: Crystallography, Geochemistry, and Environmental Significance (eds Alpers, C. N., Jambor, J. L. & Nordstrom, D. K.), pp. 541–93. Reviews in Mineralogy and Geochemistry 40.Google Scholar
Sharp, Z. D. 2014. Stable isotope techniques for gas source mass spectrometry. In Analytical Geochemistry/Inorganic INSTR. Analysis (eds Holland, H. D. & Turekian, K. K.), pp. 291307. Treatise on Geochemistry, 2nd Edition, Vol. 15. Amsterdam: Elsevier.Google Scholar
Song, H., Wignall, P. B., Tong, J., Bond, D. P. G., Song, H., Lai, X., Zhang, K., Wang, H. & Chen, Y. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353, 1221.Google Scholar
Spötl, C. 1988 a. Zur Altersstellung permoskythischer Gipse im Raum des östlichen Karwendelgebirges (Tirol). Geologisch Paläontologische Mitteilungen Innsbruck 14 (9), 197212.Google Scholar
Spötl, C. 1988 b. Schwefelisotopendatierung und fazielle Entwicklung permoskythischer Anhydrite in den Salzbergbauen von Dürnberg (Hallein) und Hallstatt (Österreich). Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten Österreichs 34 (35), 209–29.Google Scholar
Spötl, C. 1988 c. Evaporitische Fazies der Reichenhaller Formation (Skyth/Anis) im Haller Salzberg (Nördliche Kalkalpen, Tirol). Jahrbuch der Geologischen Bundesanstalt 131, 153–68.Google Scholar
Spötl, C. 1989 a. The Alpine Haselgebirge Formation, Northern Calcareous Alps (Austria): Permo-Scythian evaporites in an alpine thrust system. Sedimentary Geology 65, 113–25.Google Scholar
Spötl, C. 1989 b. Die Salzlagerstätte von Hall in Tirol – ein Überblick über den stand der geologischen erforschung des 700 jährigen Bergbaubetriebes. Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 69, 137–67.Google Scholar
Spötl, C. & Pak, E. 1996. A strontium and sulfur isotopic study of Permo-Triassic evaporites in the Northern Calcareous Alps. Chemical Geology 131, 219–34.Google Scholar
Strauss, H. 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 97118.Google Scholar
Syverson, D. D., Ono, S., Shanks, W. C. & Seyfried, W. E. 2015. Multiple sulfur isotope fractionation and mass transfer processes during pyrite precipitation and recrystallization: an experimental study at 300 and 350°C. Geochimica et Cosmochimica Acta 165, 418–34.Google Scholar
Szaran, J., Niezgoda, H. & Hałas, S. 1998. New determination of oxygen and sulphur isotope fractionation between gypsum and dissolved sulphate. ESIR Isotope Workshop IV, Portorož, June 1998, RMZ Materials and Geoenvironment 45, 180–2.Google Scholar
Thode, H. G. & Monster, J. 1965. Sulphur-isotope geochemistry of petroleum, evaporites, and ancient seas. American Association of Petroleum Geologists Memoirs 4, 367–77.Google Scholar
Tollmann, A. 1977. Geologie von Österreich. Band 1. Die Zentralalpen. Wien: Deuticke, 766 pp.Google Scholar
Weber, L. (ed.) 1997. Handbuch der Lagerstätten, der Erze, Industrieminerale und Energierohstoffe Österreichs. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt 19, 607 pp.Google Scholar
Zeebe, R. E. 2010. A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. Geochimica et Cosmochimica Acta 74, 818–28.Google Scholar
Supplementary material: File

Bojar supplementary material

Bojar supplementary material 1

Download Bojar supplementary material(File)
File 3.1 MB