Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T18:00:12.707Z Has data issue: false hasContentIssue false

Milankovitch cyclicity and the Boom Clay Formation: an Oligocene siliciclastic shelf sequence in Belgium

Published online by Cambridge University Press:  01 May 2009

E. Van Echelpoel
Affiliation:
Instituut voor Aardwetenschappen, Katholieke Universiteit Leuven, Redingenstraat 16, B-3000 Leuven, Belgium
G. P. Weedon
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

The Boom Clay Formation of northeast Belgium consists of a sequence of alternating, laterally persistent beds of silt and clay. Power-spectral analysis of grain-size variations indicates regular sedimentary cycles with wavelengths of about 100 and 46cm that had periods of 124 and 57 thousand years (ka) or less. The lateral continuity ofthe beds, combined with the regularity and estimated periods of the cycles, suggests an indirect link to the 100 and 41 ka orbital (Milankovitch) cycles. The variations in meangrain size were caused by changing bottom-water turbulence as controlled by storms and/or glacio-eustatic water depth fluctuations. This study confirms that certain marinesiliciclastic sequences can provide proxy-records of palaeoclimatic variance.

Type
Rapid Communications
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J. & Wilkinson, B. H. 1988. Periodicity of mesoscale sedimentary cycles and the role of Milankovitch orbital modulation. Journal of Geology 96, 313–22.CrossRefGoogle Scholar
Barron, J., Larsen, B., Baldauf, J. & 27 Others. 1989. Proceedings of the Ocean Drilling Program: Initial Reports 119. Ocean Drilling Program, College Station, Texas, 931 pp.CrossRefGoogle Scholar
Beauchamp, K. G. 1984. Applications of Walsh and Related Functions, with an Introduction to Sequency Theory. Academic Press, 308 pp.Google Scholar
Berger, A. L. 1988. Milankovitch theory and climate. Reviews of Geophysics 26, 624–57.CrossRefGoogle Scholar
Berger, A. 1989. The spectral characteristics of Pre-Quaternary climate records, an example of the relationship between astronomical theory and geosciences. In Climate and Geosciences (eds Berger, A., Schneider, S. and Duplessy, J. C.), pp. 4776. Reidel.CrossRefGoogle Scholar
Berger, A., Loutre, M. F. & Dehant, V. 1989. Influence of the changing lunar orbit on the astronomical frequencies of pre-Quaternary insolation patterns. Paleoceanography 4, 555–64.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V. & Flynn, J. J. 1986.Palaeogene geochronology and chronostratigraphy. In The Chronology of the Geological Record (ed. Snelling, N. J.), pp. 141–98. Geological Society of London Memoir no. 10.Google Scholar
Carss, B. W. & Neidell, N. S. 1966. A geological cyclicity detected by means of polarity coincidence correlation. Nature 212, 136–37.CrossRefGoogle Scholar
Clifton, H. K. 1981. Progradational sequences in Miocene shoreline deposition. S.E. Caliente Range, California. Journal of Sedimentary Petrology 31, 165–81.Google Scholar
Collier, R. E. L., Leeder, M. R. & Maynard, J. R. 1990. Transgressions and regressions: a model for the influence of tectonic subsidence, deposition and eustasy, with application to Quaternary and Carboniferous examples. Geological Magazine 127, 117–28.CrossRefGoogle Scholar
Fischer, A. G. 1986. Climatic rhythms recorded in strata. Annual Reviews of Earth and Planetary Sciences 14, 351–76.CrossRefGoogle Scholar
Fischer, A. G., De Boer, P. L. & Premoli Silva, I. 1990. Cyclostratigraphy. In Cretaceous Resources, Events and Rhythms(eds Ginsburg, R. N. and Beaudoin, B.), pp.139–72. Reidel.Google Scholar
Gullentops, F. & Vandenberghe, N. 1985. Rhythmicity in the Boom Clay (Rupelian) sedimentation. Terra Cognita 5, 245.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–67.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, 263 pp.Google Scholar
Heckel, P. H. 1986. Sealevel curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along mid continent outcrop belt, North America. Geology 14, 330–4.2.0.CO;2>CrossRefGoogle Scholar
Hooyberghs, H. 1983. Contribution to the study of planktonic foraminifera in the Belgian Tertiary. Aardkundige Mededelingen 2, 1131.Google Scholar
Jenkins, W. M. & Watts, D. G. 1968. Spectral Analysis and its Applications. Holden-Day, 525 pp.Google Scholar
Pisias, N G. & Mix, A. C. 1988. Aliasing of the geological record and the search for long-period Milankovitch cycles. Paleoceanography 3, 613–19.CrossRefGoogle Scholar
Priestley, M. B. 1981. Spectral Analysis and Times Series, vols 1 and 2. Academic Press, 890 pp.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89, 569–81.Google Scholar
Schwarzacher, W. 1975. Sedimentation Models and Quantitative Stratigraphy. Elsevier, 382 pp.Google Scholar
Shackleton, N. J. 1986. Palaeogene stable isotope events. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 91102.CrossRefGoogle Scholar
Van Buchem, F. S. P. & McCave, I. N. 1989. Cyclic sedimentation patterns in Lower Lias mudstones of Yorkshire (GB). Terra Nova 1, 461–67.CrossRefGoogle Scholar
Vandenberghe, N. 1978. Sedimentology of the Boom Clay (Rupelian) in Belgium. Proceedings of the Koninklijke Akademie voor Wetenschappen België, 40, 1137.Google Scholar
Vandenberghe, N. & Laga, P. 1986. The septaria of the Boom Clay (Rupelian) in its type area in Belgium. Aardkundige Mededelingen 3, 229–38.Google Scholar
Vandenberghe, N. & Van Echelpoel, E. 1987. Field guide tothe Rupelian stratotype. Bulletin van de Belgische Vereniging voor Geologie 96, 325–37.Google Scholar
Van Den Bosch, M. & Hager, H. 1984. Lithostratigraphic correlation of Rupelian deposits (Oligocene) in the Boom Area (Belgium), the Winterswijk Area (The Netherlands) and the Lower Rhine District (F.R.G.). Mededelingen van de Werkgroep voor Tertiaire en Kwartare Geologie 21, 123–38.Google Scholar
Van Houten, F. B. & Purucker, M. E. 1984. Glauconite peloids and chamositic ooids – favorable factors, constraints and problems. Earth Science Reviews 20, 211–43.CrossRefGoogle Scholar
Van Tassel, J. 1987. Upper Devonian Catskill delta margin cyclic sedimentation: Brallier, Scherr and Foreknobs Formations of Virginia and West Virginia. Geological Society of America Bulletin 99, 414–26.2.0.CO;2>CrossRefGoogle Scholar
Vinken, R. (ed.) 1988. The Northwest European Tertiary Basin (Results of IGCP 124). Geologisches Jahrbuch A100, 1508.Google Scholar
Weedon, G. P. 1989. The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. Journal of the Geological Society, London 146, 133–44.CrossRefGoogle Scholar
Weedon, G. P. in press. The spectral analysis of stratigraphic time series. In Cyclic and Event Stratification, 2nd ed.(eds Einsele, G. Ricken, W. and Seilacher, A.). Springer.Google Scholar
Weedon, G. P. & Jenkyns, H. C. in press. Regular and irregular climatic cycles and the Belemnite Marls (Pliensbachian, Lower Jurassic, Wessex Basin). Journal of the Geological Society, London.Google Scholar