Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T12:41:26.435Z Has data issue: false hasContentIssue false

Multiple magmatic fabrics in plutons: an overlooked tool for exploring interactions between magmatic processes and regional deformation?

Published online by Cambridge University Press:  11 April 2008

JIŘÍ ŽÁK*
Affiliation:
Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic Czech Geological Survey, Klárov 3, Prague, 11821, Czech Republic
KRYŠTOF VERNER
Affiliation:
Czech Geological Survey, Klárov 3, Prague, 11821, Czech Republic Institute of Petrology and Structural Geology, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
PATRICIE TÝCOVÁ
Affiliation:
Czech Geological Survey, Geologická 6, Prague, 152 00, Czech Republic
*
*Author for correspondence: jirizak@natur.cuni.cz

Abstract

This paper elaborates on the concept of multiple magmatic fabrics in plutons. After a general overview of various types of multiple fabrics that may develop in magmatic rocks, two case examples of porphyritic granite and melasyenite plutons in the Bohemian Massif are examined. In the Jizera granite, complex variations in K-feldspar phenocryst shape-fabric revealed by image analysis of a 200 m long section of an underground tunnel are in contrast with homogeneously oriented magnetic (AMS) fabric carried by coaxial contributions of biotite, magnetite and maghemite. In the Knížecí Stolec melasyenite pluton, emplacement-related margin-parallel feldspar foliation was overprinted by flat-lying foliation; the latter is interpreted to record regional tectonic strain. At the two stations examined in detail, the crystallographic-preferred orientation of biotite and amphibole in the inter-phenocryst matrix (measured using electron back-scatter diffraction – EBSD) differed from both feldspar fabric and also from the AMS principal directions. Multiple magmatic fabrics in these two plutons are interpreted in terms of fabric superposition, where late weak strain is superposed onto a high-strength phenocryst framework, but is accommodated preferentially by small mineral grains (biotite, magnetite) in the melt-bearing matrix. This mechanism may explain the discrepancy between mesoscopic feldspar fabric and AMS. We conclude that multiple magmatic fabrics in plutons may thus result from accumulated strain caused by different processes during final crystallization and, as such, may serve as a sensitive indicator of the evolving interactions between magmatic and tectonic processes in the Earth's crust.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbaret, L., Fernandez, A., Ježek, J., Ildefonse, B., Launeau, P. & Diot, H. 2000. Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 90, 97109.CrossRefGoogle Scholar
Archanjo, C. J., Trindade, R. I. F., Bouchez, J. L. & Ernesto, M. 2002. Granite fabrics and regional-scale strain partitioning in the Seridó belt (Borborema Province, NE Brazil). Tectonics 21, 3/13/14.CrossRefGoogle Scholar
Barros, C. E. M., Barbey, P. & Boullier, A. M. 2001. Role of magma pressure, tectonic stress and crystallization progress in the emplacement of syntectonic granites. The A-type Estrela Granite Complex (Carajás Mineral Province, Brazil). Tectonophysics 343, 93109.Google Scholar
Benn, K. 1994. Overprinting of magnetic fabrics in granites by small strains – numerical modeling. Tectonophysics 233, 153–62.CrossRefGoogle Scholar
Benn, K., Paterson, S. R., Lund, S. P., Pignotta, G. S. & Kruse, S. 2001. Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith. Physics and Chemistry of the Earth 26, 343–54.CrossRefGoogle Scholar
Blumenfeld, P. & Bouchez, J. L. 1988. Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology 10, 361–72.Google Scholar
Borradaile, G. 2003. Statistics of Earth-Science data. Their distribution in time, space, and orientation. Berlin, Heidelberg, New York: Springer, 351 pp.CrossRefGoogle Scholar
Borradaile, G. & Henry, B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews 42, 4993.CrossRefGoogle Scholar
Borradaile, G. & Kehlenbeck, M. 1996. Possible cryptic tectono-magnetic fabrics in ‘post-tectonic’ granitoid plutons of the Canadian Shield. Earth and Planetary Science Letters 137, 119–27.Google Scholar
Bouchez, J. L. 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E.), pp. 95112. Kluwer Academic Publishers.CrossRefGoogle Scholar
Callahan, C. N. & Markley, M. J. 2003. A record of crustal-scale stress: igneous foliation and lineation in the Mount Waldo Pluton, Waldo County, Maine. Journal of Structural Geology 25, 541–55.CrossRefGoogle Scholar
Cloos, H. 1925. Einführung in die tektonische Behandlung magmatischer Erscheinungen (Granittektonik). 1. Das Riesengebirge in Schlesien. Berlin: Borntraeger, 194 pp.Google Scholar
Fernandez, A. & Laporte, D. 1991. Significance of low symmetry fabrics in magmatic rocks. Journal of Structural Geology 13, 337–47.Google Scholar
Fowler, T. K. & Paterson, S. R. 1997. Timing and nature of magmatic fabrics from structural relations around stoped blocks. Journal of Structural Geology 19, 209–24.CrossRefGoogle Scholar
Gleizes, G., Leblanc, D., Santana, V., Olivier, P. & Bouchez, J. L. 1998. Sigmoidal structures featuring dextral shear during emplacement of the Hercynian granite complex of Cauterets-Panticosa (Pyrenees). Journal of Structural Geology 20, 1229–45.Google Scholar
Handy, M. R. 1994. Flow laws for rocks containing two non-linear viscous phases: a phenomenological approach. Journal of Structural Geology 16, 287301.Google Scholar
Holub, F. 1997. Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry, and petrogenetic interpretation. Journal of Geological Sciences, Economic Geology, Mineralogy 31, 526.Google Scholar
Hrouda, F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5, 3782.CrossRefGoogle Scholar
Hrouda, F. 1994. A technique for the measurement of thermal-changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International 118, 604–12.CrossRefGoogle Scholar
Hutton, D. H. W. 1982. A tectonic model for the emplacement of the Main Donegal Granite, NW Ireland. Journal of the Geological Society, London 139, 615–31.CrossRefGoogle Scholar
Ildefonse, B., Arbaret, L. & Diot, H. 1997. Rigid particles in simple shear flow: is their orientation periodic or steady-state? In Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E.), pp. 177–85. Kluwer Academic Publishers.Google Scholar
Ildefonse, B., Launeau, P., Bouchez, J.-L. & Fernandez, A. 1992. Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. Journal of Structural Geology 14, 7383.CrossRefGoogle Scholar
Jackson, M. & Tauxe, L. 1991. Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Reviews of Geophysics 29, 371–6.CrossRefGoogle Scholar
Janoušek, V. & Holub, F. 2007. The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proceedings of the Geologists’ Association 118, 7586.Google Scholar
Jeffery, G. B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London 102, 161–79.Google Scholar
Jelínek, V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 79, 63–7.CrossRefGoogle Scholar
Ježek, J., Melka, R., Schulmann, K. & Venera, Z. 1994. The behaviour of rigid triaxial ellipsoidal particles in viscous flows – modeling of fabric evolution in a multiparticle system. Tectonophysics 229, 165–80.Google Scholar
Ježek, J., Schulmann, K. & Segeth, K. 1996. Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows. Tectonophysics 257, 203–21.Google Scholar
Jiang, D. 2007. Numerical modeling of the motion of rigid ellipsoidal objects in slow viscous flows: a new approach. Journal of Structural Geology 29, 189200.Google Scholar
Klomínský, J. (ed.) 2005. Geological and structural characterization of granitoids in water-plant tunnels in the Jizera Mountains. Final report, Radioactive Waste Repository Authority (SÚRAO), Prague, 159 pp.Google Scholar
Kozdrój, W., Krentz, O. & Opletal, M. (eds) 2001. Geological map Lausitz-Jizera-Karkonosze (without Cenozoic sediments), 1:100,000. Sächsisches Landesamt für Umwelt und Geologie, Panstwowy Instytut Geologiczny, Česká geologická služba; Warszaw.Google Scholar
Kratinová, Z., Schulmann, K., Hrouda, F. & Shail, R. 2004. The role of regional tectonics and magma flow coupling versus internal magmatic processes in generating contrasting magmatic state fabrics within the Land's End granite. Geoscience in south-west England 10, 442–8.Google Scholar
Launeau, P. & Cruden, A. R. 1998. Magmatic fabric acquisition in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. Journal of Geophysical Research 103, 5067–89.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Melka, R., Schulmann, K., Schulmannová, B., Hrouda, F. & Lobkowicz, M. 1992. The evolution of perpendicular linear fabrics in synkinematically emplaced tourmaline granite (central Moravia-Bohemian Massif). Journal of Structural Geology 14, 605–20.Google Scholar
Memeti, V., Paterson, S. R., Economos, R., Žák, J. & Erdmann, S. 2005. Deciphering chamber growth and internal magma chamber processes using magmatic lobes as snapshots of processes during the construction of the Tuolumne batholith, Sierra Nevada. Geological Society of America Abstracts with Programs 37, 554.Google Scholar
Nagata, T. 1961. Rock magnetism. Tokyo: Maruzen, 350 pp.Google Scholar
Park, Y. & Means, W. D. 1996. Direct observation of deformation processes in crystal mushes. Journal of Structural Geology 18, 847–58.Google Scholar
Parry, M., Štípská, P., Schulmann, K., Hrouda, F., Ježek, J. & Kröner, A. 1997. Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. Tectonophysics 280, 6181.CrossRefGoogle Scholar
Paterson, S. R., Fowler, T. K., Schmidt, K. L., Yoshinobu, A. S., Yuan, E. S. & Miller, R. B. 1998. Interpreting magmatic fabric patterns in plutons. Lithos 44, 5382.Google Scholar
Paterson, S. R., Onezime, J., Teruya, L. & Žák, J. 2003. Quadruple-pronged enclaves: their significance for the interpretation of multiple magmatic fabrics in plutons. Journal of the Virtual Explorer 10, 1530.CrossRefGoogle Scholar
Paterson, S. R., Vernon, R. H. & Tobisch, O. T. 1989. A review of criteria for identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology 11, 349–63.CrossRefGoogle Scholar
Pitcher, W. S. & Berger, A. R. 1972. The geology of Donegal: a study of granite emplacement and unroofing. London: Wiley Interscience, 435 pp.Google Scholar
Prior, D. J., Boyle, A. P., Brenker, F., Cheadle, M. C., Day, A., Lopez, G., Peruzzo, L., Potts, G. J., Reddy, S., Spiess, R., Timms, N. E., Trimby, P., Wheeler, J. & Zetterström, L. 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist 84, 1741–59.CrossRefGoogle Scholar
Rochette, P., Jackson, M. & Auborg, C. 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Reviews of Geophysics 30, 209–26.Google Scholar
Rosenberg, C. L. 2001. Deformation of partially molten granite: a review and comparison of experimental and natural case studies. International Journal of Earth Sciences 90, 6076.Google Scholar
Rosenberg, C. L. & Handy, M. R. 2001. Mechanisms and orientation of melt segregation paths during pure shearing of a partially molten rock analog (norcamphor–benzamide). Journal of Structural Geology 23, 1917–32.Google Scholar
Rosenberg, C. L. & Handy, M. R. 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology 23, 1928.Google Scholar
Schulmann, K., Ježek, J. & Venera, Z. 1997. Perpendicular linear fabrics in granite: markers of combined simple shear and pure shear flows? In Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E.), pp. 159–76. Kluwer Academic Publishers.CrossRefGoogle Scholar
Škoda, R. & Novák, M. 2007. Y, REE, Nb, Ta, Ti-oxide (AB2O6) minerals from REL–REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95, 4357.Google Scholar
Tarling, D. H. & Hrouda, F. 1993. The magnetic anisotropy of rocks. London: Chapman and Hall, 217 pp.Google Scholar
Tikoff, B. & Greene, D. 1997. Stretching lineations in transpressional shear zones: an example from the Sierra Nevada Batholith, California. Journal of Structural Geology 19, 2939.CrossRefGoogle Scholar
Verner, K., Žák, J., Hrouda, F. & Holub, F. 2006. Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. Journal of Structural Geology 28, 1553–67.Google Scholar
Verner, K., Žák, J., Nahodilová, R. & Holub, F. 2008. Magmatic fabrics and emplacement of the cone-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. International Journal of Earth Sciences 97, 1933.Google Scholar
Vernon, R. H. 2000. Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosciences 5, 123.Google Scholar
Vernon, R. H., Johnson, S. E. & Melis, E. A. 2004. Emplacement-related microstructures in the margin of a deformed pluton: the San Jose tonalite, Baja California, Mexico. Journal of Structural Geology 26, 1867–84.Google Scholar
Vigneresse, J. L. & Tikoff, B. 1999. Strain partitioning during partial melting and crystallizing felsic magmas. Tectonophysics 312, 117–32.CrossRefGoogle Scholar
Willis, D. G. 1977. A kinematic model of preferred orientation. Geological Society of America Bulletin 88, 883–94.Google Scholar
Žák, J., Paterson, S. R. & Memeti, V. 2007. Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geological Society of America Bulletin 119, 184201.Google Scholar
Žák, J., Schulmann, K. & Hrouda, F. 2005. Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. Journal of Structural Geology 27, 805–22.Google Scholar
Žák, J., Vyhnálek, B. & Kabele, P. 2006. Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif). Physics of the Earth and Planetary Interiors 157, 286310.CrossRefGoogle Scholar