Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T23:48:59.378Z Has data issue: false hasContentIssue false

Petrogenesis and tectonic implications of Late Mesozoic granites in the NE Yangtze Block, China: further insights from the Jiuhuashan–Qingyang complex

Published online by Cambridge University Press:  27 October 2009

XI-SHENG XU*
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
KAZUHIRO SUZUKI
Affiliation:
Center for Chronological Research, Nagoya University, Nagoya 464-8602, Japan
LEI LIU
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
DE-ZI WANG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
*
Author for correspondence: xsxu@nju.edu.cn

Abstract

The Jiuhuashan–Qingyang complex is one of the Mesozoic granite complexes in the NE Yangzte Block, China. New petrographical and petrochemical data show that the complex comprises a dominant granodiorite–monzogranite, the Qingyang body, which was intruded by the Jiuhuashan granite body. The two are characterized by distinct mineral components and trace element patterns. Compared to the Qingyang granodiorite and monzogranite, the Jiuhuashan granite is enriched in Rb, Th, U, Nb, Ta, Hf, Yb and Lu, and depleted in Ba, Sr, Nd, Sm, Eu, Gd and Ti, which are ascribable to the separation of plagioclase and biotite, and crystallization of thorite and fergusonite during the magmatism. New LA-ICPMS zircon U–Pb dating suggests that the crystallization age of the Qingyang body is 139–133 Ma, and the Jiuhuashan granite followed at 127 Ma. Moreover, the new zircon U–Pb dates reveal that Archaean materials were involved in the formation of these magmas, and that a sodium-rich metasomatic event occurred at about 100 Ma. The CHIME monazite and zircon ages studied for the Jiuhuashan body agree well with the LA-ICPMS zircon ages. Integrating this information with previous studies for granites in the NE Yangtze Block and in the coastal area of SE China, we believe that all of these Late Mesozoic granites were produced under the tectonic regime of palaeo-Pacific plate subduction towards the SE China continent in a NW direction, but the granites in the NE Yangtze Block are basically derived by crustal melting with limited mixing of juvenile material during the magma generation.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. & Grevesse, N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197214.Google Scholar
Andersen, T. 2002. Correction of common Pb in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Charvet, J., Shu, L., Shi, Y., Guo, L. & Faure, M. 1996. The building of south China: collision of Yangzi and Cathaysia Blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223–35.Google Scholar
Chen, J. F., Foland, K. A. & Zhou, T. X. 1985. Mesozoic granitoids of the Yangtze foldbelt, China: Isotopic constraints on the magma sources. In The Crust – The Significance of Granites gneisses in the Lithosphere (ed. Wu, L. R.), pp. 217–37. Athens: Theophrastus Publications.Google Scholar
Chen, J. F. & Jahn, B.-M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.CrossRefGoogle Scholar
Chen, J. F., Zhou, T. X. & Foland, K. A. 1985. 40Ar–39Ar and Rb–Sr geochronology the Qingyang batholith, Anhui Province, China. Geochemistry 4 (3), 220–35.Google Scholar
Chen, J. F., Zhou, T. X., Li, X. M., Foland, K. A., Huang, C. Y. & Lu, W. 1993. Sr and Nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui Province. Geochimica 3, 261–8.Google Scholar
Cherniak, D. J. & Watson, E. B. 2000. Pb diffusion in zircon. Chemical Geology 172, 524.Google Scholar
Clemens, J. D. 2003. S-type granitic magmas – petrogenetic issues, models and evidence. Earth Science Reviews 61, 118.CrossRefGoogle Scholar
Geisler, T., Pidgeon, R. T., Kurtz, R., van Bronswijk, W. & Schleicher, H. 2003 a. Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist 88, 14961513.Google Scholar
Geisler, T., Rashwan, A. A., Rahn, M. K. W., Poller, U., Zwingmann, H., Pidgeon, R. T., Schleicher, H. & Tomashek, F. 2003 b. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine 67, 485508.Google Scholar
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R. T. & van Bronswijk, W. 2001. Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contributions to Mineralogy and Petrology 141, 5365.Google Scholar
Geng, H. Y., Xu, X. S., O'Reilly, S. Y., Zhao, M. & Sun, T. 2006. Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance. Science in China (Series D) 49 (7), 696713.Google Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131 (3–4), 231–82.Google Scholar
Grimmer, J. C., Ratschbacher, L., McWilliams, M., Franz, L., Gaitzsch, I., Tichomirowa, W., Hacker, B. R. & Zhang, Y. 2003. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar–39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology 197, 87110.Google Scholar
Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79, 3345.Google Scholar
Hoskin, P. W. O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69, 637–48.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Jiang, S. Y., Yu, J. M. & Lu, J. J. 2004. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic–hydrothermal fluid evolution and ore genesis. Chemical Geology 209, 193213.Google Scholar
Li, W. X. & Zhou, X. M. 2000. Geochemical constraints on the petrogenesis of Late Mesozoic igneous rocks in coastal area of Zhejiang and Fujian Province. Progress in Natural Science 10 (7), 630–41.Google Scholar
Li, Z. X. 1998. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic – A Synthesis. In Mantle dynamics and plate interactions in East Asia (eds Flower, M., Chung, S. L., Lo, C. H. & Lee, Y. Y.), pp. 221–43. American Geophysical Union, Geodynamics Series no. 27. Washington, DC.Google Scholar
Ling, H. F., Zhai, J. P. & Zhang, B. T. 1990. Genesis of rapakivi feldspar and dark-coloured enclaves of the Yaocun granite body in southern Anhui. Geological Review 36, 2030 (in Chinese with English abstract).Google Scholar
Ludwig, K. R. 2001. ISOPLOT 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication, vol. 1a. University of California at Berkeley, 58 pp.Google Scholar
Martin, L., Duchêne, S., Deloule, E. & Vanderhaeghe, O. 2006. The isotopic composition of zircon and garnet: a record of the metamorphic history of Naxos, Greece. Lithos 87, 174–92.Google Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
Norman, M. D., Pearson, N. J., Sharma, A. & Griffin, W. L. 1996. Quantitative analysis of trace elements in geological materials by laser ablation ICP-MS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter 20, 247–61.CrossRefGoogle Scholar
Norman, M. D., Griffin, W. L., Pearson, N. J., Garcia, M. O. & O'Reilly, S. Y. 1998. Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry 13, 477–82.Google Scholar
Pelleter, E., Cheilletz, A., Gasquet, D., Mouttaqi, A., Annich, M., Hakour, A. E., Deloule, E. & Feraud, G. 2007. Hydrothermal zircons: A tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt–Menhouhou gold deposit – Morocco). Chemical Geology 245, 135–61.CrossRefGoogle Scholar
Pitcher, W. S. 1997. The Nature and Origin of Granite. Second edition. London: Chapman & Hall, 387 pp.Google Scholar
Rizvanova, N. G., Levchenkov, O. A., Belous, A. E., Bezmen, N. I., Maslenikov, A. N., Komarov, A. N., Makeev, A. F. & Levskiy, L. K. 2000. Zircon reaction and stability of the U–Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contributions to Mineralogy and Petrology 139, 101–14.Google Scholar
Shen, W. Z., Ling, H. F. & Sun, T. 2007. Sr–Nd isotope geochemistry of Late Mesozoic granite and volcanic rocks, SE China. In The Genesis of Late Mesozoic Granites and Lithosphere Geodynamic Evolution (ed. Zhou, X. M.), pp. 123–60. Beijing: Science Press.Google Scholar
Sun, W. D., Ding, X., Hu, Y. H. & Li, X. H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters 262, 533–42.Google Scholar
Suzuki, K. & Adachi, M. 1991. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th–U–total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal 25, 357–76.Google Scholar
Suzuki, K., Adachi, M. & Yamamoto, K. 1990. Possible effects of grain-boundary REE on the REE distribution in felsic melts derived by partial melting. Geochemical Journal 24, 5774.CrossRefGoogle Scholar
Suzuki, K. & Kato, T. 2008. CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Research 14, 569–86.Google Scholar
van Achterbergh, E., Ryan, C. G., Jackson, S. E. & Griffin, W. L. 2001. Data reduction software for LA–ICP–MS: appendix. In Laser Ablation–ICP–Mass Spectrometry in the Earth Sciences (ed. Sylvester, P. J.), pp. 239–43. Principles and Applications, Mineralogical Association of Canada (MAC) Short Course Series, Ottawa, Ontario, Canada.Google Scholar
Wang, D. Z., Liu, C. S. & Peng, Y. M. 1965. Jiuhuashan intrusions, Anhui Province. Geological Department of Nanjing University, Research Report of National Science and Technology (in Chinese).Google Scholar
Wang, X. X., Wang, T., Jahn, B. M., Hu, N. G. & Chen, W. 2007. Tectonic significance of Late Triassic post-collisional lamprophyre dykes from the Qinling Mountains (China). Geological Magazine 144, 112.Google Scholar
Wu, C. L., Zhou, X. R., Huang, X. C., Zhang, C. H. & Huang, W. M. 1996. 40Ar–39Ar chronology of intrusive rocks from Tongling. Acta Petrologica Mineralogica 15, 299306 (in Chinese with English abstract).Google Scholar
Xie, X., Xu, X. S., Xing, G. F. & Zou, H. B. 2003. Geochemistry and genesis of Early Cretaceous volcanic rock assemblages in eastern Zhejiang. Acta Petrologica Sinica 19 (3), 385–98 (in Chinese with English abstract).Google Scholar
Xu, X. S., Dong, C. W., Li, W. X. & Zhou, X. M. 1999. Late Mesozoic intrusive complexes in coastal area of Fujian, SE China: The significance of the gabbro–diorite–granite association. Lithos 46, 299315.Google Scholar
Yan, J., Chen, J. F. & Xu, X. S. 2008. Geochemistry of Cretaceous mafic rocks from the lower Yangtze region, eastern China: Characteristics and evolution of the lithospheric mantle. Journal of Asian Earth Sciences 33, 177–93.Google Scholar
Yan, J., Liu, H. Q., Song, C. Z., Xu, X. S., An, Y. J., Liu, J. & Dai, L. Q. 2009. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications. Chinese Science Bulletin 54 (16), 28952904.Google Scholar
Yuan, F., Zhou, T. F., Fan, Y., Yue, S. C., Zhu, G. & Hou, M. J. 2006. Characteristics of Nd–Sr isotopes of the Yanshanian magmatic rocks in the Jiangnan rise bordering Anhui and Jiangxi provinces. Chinese Journal of Geology 41 (1), 133–42.Google Scholar
Yuan, F., Zhou, T. F., Yue, S. C., Zhu, G. & Hou, M. J. 2003. Rare earths of magmatic rocks of Yanshanian stage in adjacent region of Anhui and Jiangxi Provinces, Jiangnan uplift. Journal of the Chinese Rare Earth Society 21 (5), 600–3.Google Scholar
Zhang, G. W., Bai, Y. B., Sun, Y., Guo, A. L., Zhou, D. W. & Li, T. H. 1985. Composition and evolution of the Archaean crust in central Henan, China. Precambrian Research 27, 735.Google Scholar
Zhang, G. W., Yu, Z. P., Dong, Y. P. & Yao, A. P. 2000. On Precambrian framework and evolution of the Qinling belt. Acta Petrologica Sinica 16, 1121 (in Chinese with English abstract).Google Scholar
Zhou, X. M. & Li, W. X. 2000. Origin of Late Mesozoic igneous rocks of Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326, 269–87.Google Scholar
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S. & Niu, Y. L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29, 2633.Google Scholar
Supplementary material: PDF

Xu supplementary material

Tables.pdf

Download Xu supplementary material(PDF)
PDF 73.4 KB