Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T18:34:48.421Z Has data issue: false hasContentIssue false

The petrogenesis of Early–Middle Jurassic magmatism in southern and central Mexico and its role during the break-up of Western Pangaea

Published online by Cambridge University Press:  21 February 2022

Mattia Parolari*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Mexico City, Mexico
Michelangelo Martini
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Mexico City, Mexico
Arturo Gómez-Tuena
Affiliation:
Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro76230, Mexico
Fernando Ortega-Gutiérrez
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Mexico City, Mexico
Carlos Errázuriz-Henao
Affiliation:
Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro76230, Mexico
José G. Cavazos-Tovar
Affiliation:
Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro76230, Mexico
*
Author for correspondence: Mattia Parolari, Email: mattiap@geologia.unam.mx

Abstract

Central and southern Mexico represents a strategic place to understand the dynamics of Pangaea break-up and its influences on the evolution of the Pacific margin of North America. Lower–Middle Jurassic volcano-sedimentary successions, and scarce magmatic rocks, crop out discontinuously across this region and have been interpreted either as a vestige of a continental arc or as several deposits of syn-rift magmatism. At present, their origin is controversial. Available geochemical data on these igneous rocks suggest that they represent almost pure crustal melts produced in a rift environment rather than in an arc. In fact, the studied rocks exhibit the high silica contents and moderate to strong peraluminous character typical of sediment melts. The enriched isotopic composition (high 86Sr/87Sr and low 143Nd/144Nd) and the age distributions of inherited zircon grains readily identify the widespread Upper Triassic metasedimentary sequences presently exposed in southwestern and central Mexico as the most likely crustal source of these Jurassic igneous rocks. Accordingly, we argue that these Early–Middle Jurassic magmas originated in a syn-rift igneous province associated with extensional-driven crustal attenuation in the context of Pangaea fragmentation. Our findings also constrain post-Pangaea subduction initiation to be younger than Middle Jurassic time in central and southern Mexico.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, TH, McKee, JW and Jones, NW (1990) Jurassic (?) melange in north-central Mexico. Geological Society of America Abstracts with Programs 22, 3.Google Scholar
Aragón, E, D’Eramo, F, Cuffaro, M, Doglioni, C, Ficini, E, Pinotti, L, Nacif, S, Demartis, M, Hernando, I and Fuentes, T (2020) The westward lithospheric drift, its role on the subduction and transform zones surrounding Americas: Andean to cordilleran orogenic types cyclicity. Geoscience Frontiers 11, 1219–29.CrossRefGoogle Scholar
Arculus, RJ, Gurnis, M, Ishizuka, O, Reagan, MK, Pearce, JA and Sutherland, R (2019) How to create new subduction zones: a global perspective. Oceanography 32, 160–74.CrossRefGoogle Scholar
Atwater, T and Stock, J (1998) Pacific-north America plate tectonics of the Neogene southwestern united states: an update. International Geology Review 40, 375402.CrossRefGoogle Scholar
Baker, MB, Hirschmann, MM, Ghiorso, MS and Stolper, EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375, 308–11.CrossRefGoogle Scholar
Barboza-Gudiño, JR, Hoppe, M, Gómez-Anguiano, M and Martínez-Macias, PR (2004) Contributions to the stratigraphic and structural interpretation of the northwestern portion of the Sierra de Catorce, San Luis Potosi, Mexico. Revista Mexicana de Ciencias Geologicas 21, 299319.Google Scholar
Barboza-Gudiño, JR, Orozco-Esquivel, MT, Gómez-Anguiano, M and Zavala-Monsiváis, A (2008) The Early Mesozoic volcanic arc of western North America in northeastern Mexico. Journal of South American Earth Sciences 25, 4963.CrossRefGoogle Scholar
Barboza-Gudiño, JR, Zavala-Monsiváis, A, Castellanos-Rodríguez, V, Jaime-Rodríguez, D and Almaraz-Martínez, C (2021) Subduction-related Jurassic volcanism in the Mesa Central province and contemporary Gulf of Mexico opening. Journal of South American Earth Sciences 108, 102961. doi: 10.1016/j.jsames.2020.102961.CrossRefGoogle Scholar
Barboza-Gudiño, JR, Zavala-Monsiváis, A, Venegas-Rodríguez, G and Barajas-Nigoche, LD (2010) Late Triassic stratigraphy and facies from northeastern Mexico: tectonic setting and provenance. Geosphere 6, 621–40.CrossRefGoogle Scholar
Bartolini, C, Lang, H and Spell, T (2003) Geochronology, geochemistry, and tectonic setting of the Mesozoic Nazas arc in north-central Mexico, and its continuation to northern South America. In The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics (eds Bartolini, C, Buffler, RT and Blickwede, JF), pp. 7982. American Association of Petroleum Geologists Memoir no. 79.Google Scholar
Bas, MJL, Maitre, RWL, Streckeisen, A and Zanettin, B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–50.CrossRefGoogle Scholar
Bayona, G, Bustamante, C, Nova, G and Salazar-Franco, AM (2020) Jurassic evolution of the northwestern corner of Gondwana: present knowledge and future challenges in studying Colombian Jurassic rocks. In The Geology of Colombia, vol. 2 Mesozoic (eds Gómez, J and Pinilla-Pachon, AO), pp. 171207. Bogotá: Servicio Geológico Colomiano, Publicaciones Geológicas Especiales 36.Google Scholar
Bayona, G, Jiménez, G, Silva, C, Cardona, A, Montes, C, Roncancio, J and Cordani, U (2010) Paleomagnetic data and K–Ar ages from Mesozoic units of the Santa Marta massif: a preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences 29, 817–31.CrossRefGoogle Scholar
Bird, D and Burke, K (2006) Pangea breakup: Mexico, Gulf of Mexico, and Central Atlantic Ocean. SEG Technical Program Expanded Abstracts 2006, 101317a.CrossRefGoogle Scholar
Boschman, LM, van Hinsbergen, DJJ, Torsvik, TH, Spakman, W and Pindell, JL (2014) Kinematic reconstruction of the Caribbean region since the early Jurassic. Earth-Science Reviews 138, 102–36.CrossRefGoogle Scholar
Brown, M (2013) Granite: from genesis to emplacement. Geological Society of America Bulletin 125, 1079–113.CrossRefGoogle Scholar
Bryan, SE, Ewart, A, Stephens, CJ, Parianos, J and Downes, PJ (2000) The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province. Journal of Volcanology and Geothermal Research 99, 5578.CrossRefGoogle Scholar
Busby-Spera, CJ (1988) Speculative tectonic model for the early Mesozoic arc of the southwest Cordilleran United States. Geology 16, 1121–5.2.3.CO;2>CrossRefGoogle Scholar
Busby-Spera, CJ, Martinson, JM, Riggs, NR and Schermer, ER (1990) The Triassic–Jurassic magmatic arc in the Mojave-Sonoran deserts and the Sierran-Klamath region; similarities and differences in paleogeographic evolution. In Paleozoic and Early Mesozoic Paleogeographic Relations; Sierra Nevada, Klamath Mountains, and Related Terranes (eds Harwood, DS and Miller, MM), pp. 325–37. Geological Society of America, Special Papers vol. 255.CrossRefGoogle Scholar
Campa-Uranga, MF, García Díaz, JL and Iriondo, A (2004) El arco sedimentario del Jurásico Medio (Grupo Tecocoyunca y Las Lluvias) de Olinalá. GEOS: Unión Geofísica Mexicana 24, 174.Google Scholar
Cantú-Chapa, A (2009) Upper Jurassic stratigraphy (Oxfordian and Kimmeridgian) in petroleum wells of Campeche Shelf, Gulf of Mexico. In Petroleum Systems in the Southern Gulf of Mexico. (eds Bartolini, C and Román Ramos, JR), pp. 7991. American Association of Petroleum Geologists Memoir no. 90.Google Scholar
Cavazos-Tovar, JG, Gómez-Tuena, A and Parolari, M (2020) The origin and evolution of the Mexican Cordillera as registered in modern detrital zircons. Gondwana Research 86, 83103.CrossRefGoogle Scholar
Centeno-García, E (2005) Review of Upper Palaeozoic and Lower Mesozoic stratigraphy and depositional environments of central and west Mexico: constraints on terrane analysis and paleogeography. In The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives (eds Anderson, TH, Nourse, JA, McKee, JW and Steiner, MB), pp. 233–58. Geological Society of America, Special Papers vol. 393.Google Scholar
Centeno-García, E (2017) Mesozoic tectono-magmatic evolution of Mexico: an overview. Ore Geology Reviews 81, 1035–52.CrossRefGoogle Scholar
Centeno-García, E, Ruis, J, Coney, PJ, Patchett, PJ and Ortega-Gutiérrez, F (1993) Guerrero terrane of Mexico: its role in the southern Cordillera from new geochemical data. Geology 21, 419–22.2.3.CO;2>CrossRefGoogle Scholar
Centeno-García, E and Silva-Romo, G (1997) Petrogenesis and tectonic evolution of Central Mexico during Triassic–Jurassic time. Revista Mexicana de Ciencias Geologicas 14, 244–60.Google Scholar
Clemens, JD, Stevens, G and Bryan, SE (2020) Conditions during the formation of granitic magmas by crustal melting: hot or cold; drenched, damp or dry? Earth-Science Reviews 200, 102982. doi: 10.1016/j.earscirev.2019.102982.CrossRefGoogle Scholar
Collins, WJ, Murphy, JB, Johnson, TE and Huang, HQ (2020) Critical role of water in the formation of continental crust. Nature Geoscience 13, 331–8.CrossRefGoogle Scholar
Contreras-López, M, Delgado-Argote, LA, Weber, B, Torres-Carrillo, XG, Frei, D and Gómez-Alvarez, DK (2021) Petrogenesis of the meta-igneous rocks of the Sierra El Arco and coeval magmatic rocks in Baja California: Middle Jurassic–Early Cretaceous (166–140 Ma) island arc magmatism of NW México. International Geology Review 63, 1153–80.CrossRefGoogle Scholar
Contreras-López, M, Delgado-Argote, LA, Weber, B and Valencia, V (2018) Petrology and geochronology of the Calmallí pluton: insights to the suture zone between island arc and continental crusts in the southern Peninsular Ranges batholith, Baja California, México. Journal of South American Earth Sciences 88, 568–88.CrossRefGoogle Scholar
Coombs, HE, Kerr, AC, Pindell, J, Buchs, D, Weber, B and Solari, L (2020) Petrogenesis of the crystalline basement along the western Gulf of Mexico: postcollisional magmatism during the formation of Pangea. In Southern and Central Mexico: Basement Framework, Tectonic Evolution, and Provenance of Mesozoic–Cenozoic Basins (eds Martens, U and Molina Garza, RS). Geological Society of America, Special Papers, published online 23 August 2020. doi: 10.1130/2020.2546(02).Google Scholar
Correa-Martínez, AM, Rodríguez, G, Arango, MI, Zapata, G and Bermúdez, JG (2016) Catálogo de Unidades Litoestratigráficas de Colombia: Batolito de Mogotes, Cordillera Oriental, Departamento de Santander. Medellin: Servicio Geológico Colombiano, 112 pp.Google Scholar
Díaz-Alvarado, J, Fernández, C, Chichorro, M, Castro, A and Pereira, MF (2016) Tracing the Cambro-Ordovician ferrosilicic to calc-alkaline magmatic association in Iberia by in situ U–Pb SHRIMP zircon geochronology (Gredos massif, Spanish Central System batholith). Tectonophysics 681, 95110.CrossRefGoogle Scholar
Díaz-Bravo, BA, Gómez-Tuena, A, Ortega-Obregón, C and Pérez-Arvizu, O (2014) The origin of intraplate magmatism in the western Trans-Mexican volcanic belt. Geosphere 10, 340–73.CrossRefGoogle Scholar
Dickinson, WR (2009) Anatomy and global context of the North American Cordillera. In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (eds Mahlburg Kay, S, Ramos, VA and Dickinson, WR), pp. 129. Geological Society of America, Memoirs no. 204.Google Scholar
Dickinson, WR and Lawton, TF (2001) Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geological Society of America Bulletin 113, 1142–60.2.0.CO;2>CrossRefGoogle Scholar
Elías Herrera, M and Sánchez Zavala, J (1990) Tectonic implications of a mylonitic granite in the lower structural levels of the Tierra Caliente complex (Guerrero terrane), southern Mexico. Revista Mexicana de Ciencias Geologicas 9, 113–25.Google Scholar
Elías-Herrera, M, Sánchez-Zavala, JL and Macias-Romo, C (2000) Geologic and geochronologic data from the Guerrero terrane in the Tejupilco area, southern Mexico: new constraints on its tectonic interpretation. Journal of South American Earth Sciences 13, 355–75.CrossRefGoogle Scholar
Erlich, RN and Pindell, J (2021) Crustal origin of the West Florida Terrane, and detrital zircon provenance and development of accommodation during initial rifting of the southeastern Gulf of Mexico and western Bahamas. In The Basins, Orogens and Evolution of the Southern Gulf of Mexico and Northern Caribbean (eds Davison, I, Hull, JNF and Pindell, J), 77118. Geological Society of London, Special Publication no. 504.Google Scholar
Fastovsky, DE, Hermes, OD, Strater, NH, Bowring, SA, Clark, JM, Montellano, M and Hernandez, RR (2005) Pre-Late Jurassic, fossil-bearing volcanic and sedimentary red beds of Huizachal Canyon, Tamaulipas, Mexico. The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives (eds Anderson, TH, Nourse, JA, McKee, JW and Steiner, MB), pp. 401–26. Geological Society of America, Special Papers vol. 393.Google Scholar
Frederick, BC, Blum, MD, Snedden, JW and Fillon, RH (2020) Early Mesozoic synrift Eagle Mills Formation and coeval siliciclastic sources, sinks, and sediment routing, northern Gulf of Mexico basin. Geological Society of America Bulletin 132, 2631–50.CrossRefGoogle Scholar
García-Arias, M, Díez-Montes, A, Villaseca, C and Blanco-Quintero, IF (2018) The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: a review. Earth-Science Reviews 176, 345–72.CrossRefGoogle Scholar
Gill, JB (1981) Bulk chemical composition of orogenic andesites. In Orogenic Andesites and Plate Tectonics, pp. 97167. Minerals and Rocks. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Godínez-Urban, A, Lawton, TF, Molina Garza, RS, Iriondo, A, Weber, B and López-Martínez, M (2011) Jurassic volcanic and sedimentary rocks of the La Silla and Todos Santos Formations, Chiapas: record of Nazas arc magmatism and rift-basin formation prior to opening of the Gulf of Mexico. Geosphere 7, 121–44.CrossRefGoogle Scholar
Goldhammer, RK (1999) Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico. In Mesozoic Sedimentary and Tectonic History of North-Central Mexico (eds Bartolini, C, Wilson, JL and Lawton, TF), pp. 158. Geological Society of America, Special Papers vol. 340.Google Scholar
Goldschmidt, VM (1933) Grundlagen der quantitativen Geochemie. Fortschritte der Mineralogie, Kristallographie und Petrographie 17, 112–56.Google Scholar
Goldstein, SJ and Jacobsen, SB (1988) Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth and Planetary Science Letters 87, 249–65.CrossRefGoogle Scholar
Gómez-Tuena, A, Cavazos-Tovar, JG, Parolari, M, Straub, SM and Espinasa-Pereña, R (2018a) Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas. Lithos 322, 5266.CrossRefGoogle Scholar
Gómez-Tuena, A, Mori, L and Straub, SM (2018b) Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews 183, 153–81.CrossRefGoogle Scholar
González-León, CM, Vázquez-Salazar, M, Navarro, TS, Solari, LA, Nourse, JA, del Rio-Salas, R, Lozano-Santacruz, R, Arvizu, OP and Valenzuela Chacón, JC (2021) Geology and geochronology of the Jurassic magmatic arc in the Magdalena quadrangle, north-central Sonora, Mexico. Journal of South American Earth Sciences 108, 103055. doi: 10.1016/j.jsames.2020.103055.CrossRefGoogle Scholar
Gualda, GAR, Ghiorso, MS, Lemons, RV and Carley, TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology 53, 875–90.CrossRefGoogle Scholar
Harris, N and Massey, J (1994) Decompression and anatexis of Himalayan metapelites. Tectonics 13, 1537–46.CrossRefGoogle Scholar
Harris, NBW, Pearce, JA and Tindle, AG (1986) Geochemical characteristics of collision-zone magmatism. In Collision Tectonics (eds Harris, NBW, Pearce, JA and Tindle, AG), pp. 6781. Geological Society of London, Special Publication no. 19. Google Scholar
Hart, SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters 90, 273–96.CrossRefGoogle Scholar
Haxel, GB, Wright, JE, Riggs, NR, Tosdal, RM and May, DJ (2005) Middle Jurassic Topawa group, Baboquivari Mountains, south-central Arizona: volcanic and sedimentary record of deep basins within the Jurassic magmatic arc. In The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives (eds Anderson, TH, Nourse, JA, McKee, JW and Steiner, MB), pp. 329–57. Geological Society of America, Special Papers vol. 393.Google Scholar
Heatherington, AL and Mueller, PA (1991) Geochemical evidence for Triassic rifting in southwestern Florida. Tectonophysics 188, 291302.CrossRefGoogle Scholar
Heatherington, AL and Mueller, PA (1999) Lithospheric sources of North Florida, USA tholeiites and implications for the origin of the Suwannee terrane. Lithos 46, 215–33.CrossRefGoogle Scholar
Heatherington, AL and Mueller, PA (2003) Mesozoic igneous activity in the Suwannee terrane, Southeastern USA: petrogenesis and Gondwanan affinities. Gondwana Research 6, 296311.CrossRefGoogle Scholar
Heffner, DM, Knapp, JH, Akintunde, OM and Knapp, CC (2012) Preserved extent of Jurassic flood basalt in the South Georgia Rift: a new interpretation of the J horizon. Geology 40, 167–70.CrossRefGoogle Scholar
Helbig, M, Keppie, JD, Murphy, JB and Solari, LA (2012) U–Pb geochronological constraints on the Triassic–Jurassic Ayú Complex, southern Mexico: derivation from the western margin of Pangea-A. Gondwana Research 22, 910–27.CrossRefGoogle Scholar
Heron, PJ (2019) Mantle plumes and mantle dynamics in the Wilson cycle. In Fifty Years of the Wilson Cycle Concept in Plate Tectonics (eds Wilson, RW, Houseman, GA, McCaffrey, KJW, Doré, AG and Buiter, SJH), pp. 87103. Geological Society of London, Special Publication no. 470.Google Scholar
Hill, RI (1991) Starting plumes and continental break-up. Earth and Planetary Science Letters 104, 398416.CrossRefGoogle Scholar
Hole, MJ (2015) The generation of continental flood basalts by decompression melting of internally heated mantle. Geology 43, 311–14.CrossRefGoogle Scholar
Irvine, TN and Baragar, WRA (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Jones, NW, McKee, JW, Anderson, TH and Silver, LT (1995) Jurassic volcanic rocks in northeastern Mexico: a possible remnant of a Cordilleran magmatic arc. In Studies on the Mesozoic of Sonora and Adjacent Areas (eds Jacques-Ayala, C, González-Léon, CM and Roldán-Quintana, J), pp. 179–90. Geological Society of America, Special Papers vol. 301.CrossRefGoogle Scholar
Kanaris-Sotiriou, R, Morton, AC and Taylor, PN (1993) Palaeogene peraluminous magmatism, crustal melting and continental breakup: the Erlend Complex, Faeroe-Shetland Basin, NE Atlantic. Journal of the Geological Society, London 150, 903–14.CrossRefGoogle Scholar
Kay, RW and Kay, SM (1988) Crustal recycling and the Aleutian arc. Geochimica et Cosmochimica Acta 52, 1351–9.CrossRefGoogle Scholar
Keppie, DF, Hynes, AJ, Lee, JKWW and Norman, M (2012) Oligocene-Miocene back-thrusting in southern Mexico linked to the rapid subduction erosion of a large forearc block. Tectonics 31, 117.CrossRefGoogle Scholar
Keppie, JD, Nance, RD, Dostal, J, Ortega-Rivera, A, Miller, BV, Fox, D, Muise, J, Powell, JT, Mumma, SA and Lee, JWK (2004) Mid-Jurassic tectonothermal event superposed on a Palaeozoic geological record in the Acatlán Complex of southern Mexico: hotspot activity during the breakup of Pangea. Gondwana Research 7, 238–60.CrossRefGoogle Scholar
Kimbrough, DL and Moore, TE (2003) Ophiolite and volcanic arc assemblages on the Vizcaíno Peninsula and Cedros Island, Baja California Sur, México: Mesozoic forearc lithosphere of the Cordilleran magmatic arc. In Tectonic Evolution of Northwestern Mexico and the Southwestern USA (eds Johnson, SE, Paterson, SR, Fletcher, JM, Girty, GH, Kimbrough, DL and Martín-Barajas, A), pp. 4371. Geological Society of America, Special Papers vol. 374.Google Scholar
Kinoshita, O (2002) Possible manifestations of slab window magmatism in Cretaceous southwest Japan. Tectonophysics 344, 113.CrossRefGoogle Scholar
Kirsch, M, Helbig, M, Keppie, JD, Murphy, JB, Lee, JKW and Solari, LA (2014) A Late Triassic tectonothermal event in the eastern Acatlán Complex, southern Mexico, synchronous with a magmatic arc hiatus: the result of flat-slab subduction? Lithosphere 6, 6379.CrossRefGoogle Scholar
Klitgord, KD, Hutchinson, DR and Schouten, H (1988) U.S. Atlantic continental margin; structural and tectonic framework. In The Atlantic Continental Margin (ed. Sheridan, RE and Grow, JA), pp. 1955. Boulder, CO: Geological Society of America.Google Scholar
Labails, C, Olivet, JL, Aslanian, D and Roest, WR (2010) An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297, 355–68.CrossRefGoogle Scholar
Lawton, TF and Molina Garza, RS (2014) U–Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: implications of a Jurassic age for continental-arc magmatism in north-central Mexico. Geological Society of America Bulletin 126, 1181–99.CrossRefGoogle Scholar
Lawton, TF, Urueña, JER, Solari, LA, Terrazas, CT, Juárez-Arriaga, E and Ortega-Obregón, C (2018) Provenance of Upper Triassic–Middle Jurassic strata of the Plomosas uplift, east-central Chihuahua, Mexico, and possible sedimentologic connections with Colorado Plateau depositional systems. In Tectonics, Sedimentary Basins, and Provenance: A Celebration of the Career of William R. Dickinson (eds Ingersoll, RV, Lawton, TF and Graham, SA), pp. 481507. Geological Society of America, Special Papers vol. 540. Google Scholar
Le Roy, P and Piqué, A (2001) Triassic-Liassic western Moroccan synrift basins in relation to the Central Atlantic opening. Marine Geology 172, 359–81.CrossRefGoogle Scholar
López Infanzón, M (1986) Estudio petrogenético de las Rocas Igneas en las Formaciones Huizachal y Nazas. Boletín de la Sociedad Geológica Mexicana 47, 141.CrossRefGoogle Scholar
López-Isaza, JA and Zuluaga, CA (2020) Late Triassic to Jurassic magmatism in Colombia: implications for the evolution of the northern margin of South America. In The Geology of Colombia, vol. 2 Mesozoic (eds Gómez, J and Pinilla-Pachon, AO), pp. 77116. Bogotá: Servicio Geológico Colomiano, Publicaciones Geológicas Especiales 36.Google Scholar
Martini, M, Ferrari, L, López-Martínez, M, Cerca-Martínez, M, Valencia, VA and Serrano-Duran, L (2009) Cretaceous-Eocene magmatism and Laramide deformation in southwestern Mexico: no role for terrane accretion. In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (eds Mahlburg Kay, S, Ramos, VA and Dickinson, WR), pp. 151–82. Geological Society of America, Memoirs no. 204.Google Scholar
Martini, M, Fitz, E, Solari, L, Camprubí, A, Hudleston, PJ, Lawton, TF, Tolson, G and Centeno-García, E (2012) The Late Cretaceous fold-thrust belt in the Peña de Bernal–Tamazunchale area and its possible relationship to the accretion of the Guerrero Terrane. In GSA Field Guide 25: The Southern Cordillera and Beyond (eds Aranda-Gómez, JJ, Tolson, G and Molina-Garza, RS), pp. 1938. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Martini, M and Ortega-Gutiérrez, F (2018) Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: a review. Earth-Science Reviews 183, 3855.CrossRefGoogle Scholar
Martini, M, Solari, L and Camprubí, A (2013) Kinematics of the Guerrero terrane accretion in the Sierra de Guanajuato, central Mexico: new insights for the structural evolution of arc-continent collisional zones. International Geology Review 55, 574–89.CrossRefGoogle Scholar
Martin-Rojas, I, Somma, R, Delgado, F, Estévez, A, Iannace, A, Perrone, V and Zamparelli, V (2009) Triassic continental rifting of Pangaea: direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. Journal of the Geological Society, London 166, 447–58.CrossRefGoogle Scholar
Martiny, BM, Morán-Zenteno, DJ, Tolson, G, Silva-Romo, G and López-Martnez, M (2012) The Salado River fault: reactivation of an early Jurassic fault in a transfer zone during Laramide deformation in southern Mexico. International Geology Review 54, 144–64.CrossRefGoogle Scholar
Marzen, RE, Shillington, DJ, Lizarralde, D, Knapp, JH, Heffner, DM, Davis, JK and Harder, SH (2020) Limited and localized magmatism in the Central Atlantic Magmatic Province. Nature Communications 11, 18.CrossRefGoogle ScholarPubMed
Marzoli, A, Callegaro, S, dal Corso, J, Davies, JHFL, Chiaradia, M, Youbi, N, Bertrand, H, Reisberg, L, Merle, R and Jourdan, F (2018) The Central Atlantic Magmatic Province (CAMP): a review. In The Late Triassic World (ed. Tanner, LH), pp. 91125. Topics in Geobiology, vol. 46. Cham: Springer.CrossRefGoogle Scholar
Maus, S, Barckhausen, U, Berkenbosch, H, Bournas, N, Brozena, J, Childers, V, Dostaler, F, Fairhead, JD, Finn, C, von Frese, RRB, Gaina, C, Golynsky, S, Kucks, R, Lühr, H, Milligan, P, Mogren, S, Müller, RD, Olesen, O, Pilkington, M, Saltus, R, Schreckenberger, B, Thébault, E and Tontini, FC (2009) EMAG2: a 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems 10, Q08005. doi: 10.1029/2009GC002471.CrossRefGoogle Scholar
McDonough, WF and Sun, SS (1995) The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
Mickus, K, Stern, RJ, Keller, GR and Anthony, EY (2009) Potential field evidence for a volcanic rifted margin along the Texas Gulf Coast. Geology 37, 387–90.CrossRefGoogle Scholar
Miller, DM, Goldstein, SL and Langmuir, CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–20.CrossRefGoogle Scholar
Molina-Garza, RS, Lawton, TF, Figueroa-Guadarrama, A and Pindell, J (2020) Mexican record of circum-Gulf of Mexico Jurassic depositional systems and climate. In Southern and Central Mexico: Basement Framework, Tectonic Evolution, and Provenance of Mesozoic–Cenozoic Basins (eds Martens, U and Molina-Garza, RS). Geological Society of America, Special Papers, published online 23 August 2020. doi: 10.1130/2020.2546(13).Google Scholar
Montaño-Cortes, PC, Molina-Garza, RS and Iriondo, A (2019) Paleomagnetismo e isotopos de Hf en rocas del cretacico inferior del terreno guerrero, bahia chamela e isla cocinas (Jalisco, Mexico): implicaciones tectonicas. Revista Mexicana de Ciencias Geologicas 36, 289307.CrossRefGoogle Scholar
Montel, JM and Vielzeuf, D (1997) Partial melting of metagreywackes, Part II. compositions of minerals and melts. Contributions to Mineralogy and Petrology 128, 176–96.CrossRefGoogle Scholar
Montes, AD, Catalán, JRM and Mulas, FB (2010) Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Research 17, 363–76.CrossRefGoogle Scholar
Morán-Zenteno, DJ, Corona-Chavez, P and Tolson, G (1996) Uplift and subduction erosion in southwestern Mexico since the Oligocene: pluton geobarometry constraints. Earth and Planetary Science Letters 141, 5165.CrossRefGoogle Scholar
Morgan, WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94, 123–39.CrossRefGoogle Scholar
Morris, RA, Debari, SM, Busby, C, Medynski, S and Jicha, BR (2019) Building arc crust: plutonic to volcanic connections in an extensional oceanic arc, the Southern Alisitos Arc, Baja California. Journal of Petrology 60, 1195–228.CrossRefGoogle Scholar
Müller, RD, Zahirovic, S, Williams, SE, Cannon, J, Seton, M, Bower, DJ, Tetley, MG, Heine, C, le Breton, E, Liu, S, Russell, SHJ, Yang, T, Leonard, J and Gurnis, M (2019) A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–907.CrossRefGoogle Scholar
Murphy, JB (2020) Appinite suites and their genetic relationship with coeval voluminous granitoid batholiths. International Geology Review 62, 683713.CrossRefGoogle Scholar
Nabelek, PI (2020) Petrogenesis of leucogranites in collisional orogens. In Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments (eds Janoušek, V, Bonin, B, Collins, WJ, Farina, F and Bowden, P), pp. 179207. Geological Society of London, Special Publication no. 491.Google Scholar
Nesbitt, HW and Young, GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.CrossRefGoogle Scholar
Nikolaeva, K, Gerya, TV and Marques, FO (2011) Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology 39, 463–6.CrossRefGoogle Scholar
O’Hara, D, Karlstrom, L and Ramsey, DW (2020) Time-evolving surface and subsurface signatures of Quaternary volcanism in the Cascades arc. Geology 48, 1088–93.CrossRefGoogle Scholar
Ohta, T and Arai, H (2007) Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology 240, 280–97.CrossRefGoogle Scholar
Ortega-Flores, B, Solari, LA and de Jesús Escalona-Alcázar, F (2016) The Mesozoic successions of western Sierra de Zacatecas, central Mexico: provenance and tectonic implications. Geological Magazine 153, 696717.CrossRefGoogle Scholar
Ortega-Flores, B, Solari, L, Lawton, TF and Ortega-Obregón, C (2014) Detrital-zircon record of major Middle Triassic–Early Cretaceous provenance shift, central Mexico: demise of Gondwanan continental fluvial systems and onset of back-arc volcanism and sedimentation. International Geology Review 56, 237–61.CrossRefGoogle Scholar
Ortega-Flores, B, Solari, LA and Martini, M (2021) Multidimensional Scaling (MDS): a quantitative approximation of zircon ages to sedimentary provenance with some examples from Mexico. Journal of South American Earth Sciences 110, 103347. doi: 10.1016/j.jsames.2021.103347.CrossRefGoogle Scholar
Ortega-Flores, B, Solari, LA, Martini, M and Ortega-Obregón, C (2020) The Guerrero terrane, a para-autochthonous block on the paleo-Pacific continental margin of North America: evidence from zircon U–Pb dating and Hf isotopes. In Southern and Central Mexico: Basement Framework, Tectonic Evolution, and Provenance of Mesozoic–Cenozoic Basins (eds Martens, U and Molina-Garza, RS). Geological Society of America, Special Papers, published online 23 August 2020. doi: 10.1130/2020.2546(08).Google Scholar
Parolari, M, Gómez-Tuena, A, Cavazos-Tovar, JG and Hernández-Quevedo, G (2018) A balancing act of crust creation and destruction along the western Mexican convergent margin. Geology 46, 455–8.CrossRefGoogle Scholar
Parolari, M, Gómez-Tuena, A, Errázuriz-Henao, C and Cavazos-Tovar, JG (2021) Orogenic andesites and their link to the continental rock cycle. Lithos 382–383, 105958. doi: 10.1016/j.lithos.2020.105958.CrossRefGoogle Scholar
Patiño Douce, AE (2000) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding Granites: Integrating New and Classical Techniques (eds Castro, A, Fernández, C and Vigneresse, JL), pp. 5575. Geological Society of London, Special Publication no. 168.Google Scholar
Patiño Douce, AE and Beard, JS (1996) Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology 37, 9991024.CrossRefGoogle Scholar
Patiño Douce, AE and Harris, N (1998) Experimental constraints on Himalayan anatexis. Journal of Petrology 39, 689710.CrossRefGoogle Scholar
Pérez-Gutiérrez, R, Solari, LA, Gómez-Tuena, A and Martens, U (2009) Mesozoic geologic evolution of the Xolapa migmatitic complex north of Acapulco, southern Mexico: implications for paleogeographic reconstructions. Revista Mexicana de Ciencias Geológicas 26, 201–21.Google Scholar
Perri, F (2020) Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 556, 109873. doi: 10.1016/j.palaeo.2020.109873.CrossRefGoogle Scholar
Pilger, RH (1981) Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geological Society of America Bulletin 92, 448–56.2.0.CO;2>CrossRefGoogle Scholar
Pindell, J and Dewey, JF (1982) Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics 1, 179211.CrossRefGoogle Scholar
Pindell, JL and Kennan, L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In The Origin and Evolution of the Caribbean Plate (eds James, KH, Lorente, MA and Pindell, JL), pp. 155. Geological Society of London, Special Publication no. 328.Google Scholar
Pindell, J, Villagómez, D, Molina-Garza, R, Graham, R and Weber, B (2021) A revised synthesis of the rift and drift history of the Gulf of Mexico and surrounding regions in the light of improved age dating of the Middle Jurassic salt. In The Basins, Orogens and Evolution of the Southern Gulf of Mexico and Northern Caribbean (eds Davison, I, Hull, JNF and Pindell, J), pp. 2976. Geological Society of London, Special Publication no. 504.Google Scholar
Pindell, J, Weber, B, Hale-Erlich, W, Cossey, S, Bitter, M, Molina Garza, R, Graham, R and Erlich, RN (2020) Strontium isotope dating of evaporites and the breakup of the Gulf of Mexico and Proto–Caribbean Seaway. In Southern and Central Mexico: Basement Framework, Tectonic Evolution, and Provenance of Mesozoic–Cenozoic Basins (eds Martens, U and Molina-Garza, RS). Geological Society of America, Special Papers, published online 23 August 2020. doi: 10.1130/2020.2546(12).Google Scholar
Plafker, G and Berg, HC (eds) (1994) The Geology of Alaska. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Plank, T (2013) The chemical composition of subducting sediments In Treatise on Geochemistry, 2nd Edition (eds Holland, HD and Turekian, KK), pp. 607–29. Oxford: Elsevier Ltd.Google Scholar
Pompa-Mera, V, Schaaf, P, Hernández-Treviño, T, Weber, B, Solís-Pichardo, G, Villanueva-Lascurain, D and Layer, P (2013) Geology, geochronology, and geochemistry of Isla María Madre, Nayarit, Mexico. Revista Mexicana de Ciencias Geologicas 30, 123.Google Scholar
Potra, A, Hickey-Vargas, R, Macfarlane, AW and Salters, VJM (2014) Pb, Sr, and Nd isotopic characteristics of a variety of lithologies from the Guerrero composite terrane, west-central Mexico: constraints on their origin. Revista Mexicana de Ciencias Geologicas 31, 203–20.Google Scholar
Quandt, D, Trumbull, RB, Altenberger, U, Cardona, A, Romer, RL, Bayona, G, Ducea, M, Valencia, V, Vásquez, M, Cortes, E and Guzman, G (2018) The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications. Journal of South American Earth Sciences 86, 216–30.CrossRefGoogle Scholar
Rapp, RP and Watson, EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891931.CrossRefGoogle Scholar
Rapp, RP, Watson, EB and Miller, CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51, 125.CrossRefGoogle Scholar
Riel, N, Jaillard, E, Martelat, JE, Guillot, S and Braun, J (2018) Permian–Triassic Tethyan realm reorganization: implications for the outward Pangea margin. Journal of South American Earth Sciences 81, 7886.CrossRefGoogle Scholar
Riggs, NR, Oberling, ZA, Howell, ER, Parker, WG, Barth, AP, Cecil, MR and Martz, JW (2016) Sources of volcanic detritus in the basal Chinle Formation, southwestern Laurentia, and implications for the Early Mesozoic magmatic arc. Geosphere 12, 439–63.CrossRefGoogle Scholar
Riggs, NR, Reynolds, SJ, Lindner, PJ, Howell, ER, Barth, AP, Parker, WG and Walker, JD (2013) The early Mesozoic Cordilleran arc and late Triassic paleotopography: the detrital record in upper Triassic sedimentary successions on and off the Colorado Plateau. Geosphere 9, 602–13.CrossRefGoogle Scholar
Rosenberg, CL and Handy, MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology 23, 1928.CrossRefGoogle Scholar
Rubio-Cisneros, II and Lawton, TF (2011) Detrital zircon U–Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: record of Early–Middle Jurassic arc volcanism and transition to crustal extension. Geosphere 7, 159–70.CrossRefGoogle Scholar
Rudnick, RL and Gao, S (2003) Composition of the continental crust. Treatise on Geochemistry 3–9, 164.Google Scholar
Sahabi, M, Aslanian, D and Olivet, JL (2004) Un nouveau point de départ pour l’histoire de l’Atlantique central. Comptes Rendus Geoscience 336, 1041–52.CrossRefGoogle Scholar
Schaaf, P, Díaz-López, F, Gutiérrez-Aguilar, F, Solís-Pichardo, G, Hernández-Treviño, T, Arrieta-García, G, Solari, L and Ortega-Obregón, C (2020) Geochronology and geochemistry of the Puerto Vallarta igneous and metamorphic complex and its relation to Cordilleran arc magmatism in northwestern Mexico. Lithos 352–353, 105248. doi: 10.1016/j.lithos.2019.105248.CrossRefGoogle Scholar
Schettino, A and Turco, E (2009) Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions. Geophysical Journal International 178, 1078–97.CrossRefGoogle Scholar
Schlische, RW (2003) 4. Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American Rift System. In The Great Rift Valleys of Pangea in Eastern North America (eds LeTourneau, P and Olsen, P), pp. 2164. New York: Columbia University Press.CrossRefGoogle Scholar
Scholl, DW and von Huene, R (2007) Crustal recycling at modern subduction zones applied to the past – issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. In 4-D Framework of Continental Crust (eds Hatcher, RD, Carlson, MP, McBride, JH and Martínez Catalán, JR), pp. 932. Geological Society of America, Memoirs no. 200.CrossRefGoogle Scholar
Schoonmaker, A and Kidd, WSF (2006) Evidence for a ridge subduction event in the Ordovician rocks of north-central Maine. Geological Society of America Bulletin 118, 897912.CrossRefGoogle Scholar
Shaw, DM, Reilly, GA, Muysson, JR, Pattenden, GE and Campbell, FE (1967) An estimate of the chemical composition of the Canadian Precambrian shield. Canadian Journal of Earth Sciences 4, 829–53.CrossRefGoogle Scholar
Silva-Romo, G, Arellano-Gil, J, Mendoza-Rosales, C and Nieto-Obregón, J (2000) A submarine fan in the Mesa Central, Mexico. Journal of South American Earth Sciences 13, 429–42.CrossRefGoogle Scholar
Silva-Romo, G, Mendoza-Rosales, CC, Campos-Madrigal, E, Centeno-García, E and Peralta-Salazar, R (2015) Early Mesozoic Southern Mexico-Amazonian connection based on U–Pb ages from detrital zircons: the La Mora Paleo-River in the Mixteca Terrane and its paleogeographic and tectonic implications. Gondwana Research 28, 689701.CrossRefGoogle Scholar
Sisson, VB, Pavlis, TL, Roeske, SM and Thorkelson, DJ (2003) Introduction: an overview of ridge-trench interactions in modern and ancient settings. In Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction Along the North Pacific Margin (eds Sisson, VB, Roeske, SM and Pavlis, TL), pp. 118. Geological Society of America, Special Papers vol. 371.CrossRefGoogle Scholar
Spencer, CJ, Murphy, JB, Hoiland, CW, Johnston, ST, Mitchell, RN and Collins, WJ (2019) Evidence for whole mantle convection driving Cordilleran tectonics. Geophysical Research Letters 46, 4239–48.CrossRefGoogle Scholar
Spikings, R and Paul, AN (2019) The Permian – Triassic history of magmatic rocks of the northern Andes (Colombia and Ecuador): supercontinent assembly and disassembly. In The Geology of Colombia, vol. 2 Mesozoic (eds Gómez, J and Pinilla-Pachon, AO), pp. 143. Bogotá: Servicio Geológico Colomiano, Publicaciones Geológicas Especiales 36.Google Scholar
Stern, RJ and Gerya, T (2018) Subduction initiation in nature and models: a review. Tectonophysics 746, 173–98.CrossRefGoogle Scholar
Stolper, E and Newman, S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters 121, 293325.CrossRefGoogle Scholar
Stracke, A, Hofmann, AW and Hart, SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems 6, Q05007. doi: 10.1029/2004GC000824.CrossRefGoogle Scholar
Straub, SM, Gómez-Tuena, A, Stuart, FM, Zellmer, GF, Espinasa-Pereña, R, Cai, Y and Iizuka, Y (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters 303, 337–47.CrossRefGoogle Scholar
Sun, SS and McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, AD and Norry, MJ), pp. 313–45. Geological Society of London, Special Publication no. 42. Google Scholar
Talavera-Mendoza, O (2000) Mélanges in southern Mexico: geochemistry and metamorphism of Las Ollas complex (Guerrero terrane). Canadian Journal of Earth Sciences 37, 1309–20.CrossRefGoogle Scholar
Taylor, SR, McLennan, SM and McCulloch, MT (1983) Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta 47, 1897–905.CrossRefGoogle Scholar
Thompson, AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal of Science 282, 1567–95.CrossRefGoogle Scholar
Torres-Carrillo, XG, Delgado-Argote, LA, Weber, B and Contreras-López, M (2020) Early to Middle Jurassic San Andrés-Cedros plutonic suite, western coast of Baja California, Mexico: geochemical and isotopic evidence for an island arc extending to the central peninsula. Journal of South American Earth Sciences 98, 102471. doi: 10.1016/j.jsames.2019.102471.CrossRefGoogle Scholar
Tosdal, RM, Haxel, GB and Wright, JE (1989) Jurassic geology of the Sonoran Desert region, southern Arizona, southeastern California, and northernmost Sonora; construction of a continental-margin magmatic arc. Arizona Geological Society Digest 17, 397434.Google Scholar
Turner, SJ and Langmuir, CH (2015) The global chemical systematics of arc front stratovolcanoes: evaluating the role of crustal processes. Earth and Planetary Science Letters 422, 182–93.CrossRefGoogle Scholar
van der Lelij, R, Spikings, R, Ulianov, A, Chiaradia, M and Mora, A (2016) Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research 31, 271–94.CrossRefGoogle Scholar
van der Meer, DG, van Hinsbergen, DJJ and Spakman, W (2018) Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309448.CrossRefGoogle Scholar
Vásquez-Serrano, A, Nieto-Samaniego, ÁF, Alaniz-Álvarez, S and Rangel-Granados, E (2019) Shortening and kinematics of the Late Triassic rocks in the Tolimán area, central Mexico. Journal of South American Earth Sciences 95, 102303. doi: 10.1016/j.jsames.2019.102303.CrossRefGoogle Scholar
Vega-Granillo, R, Sarmiento-Villagrana, A, Vidal-Solano, JR, Araux-Sánchez, E and Bourjac-de-Anda, A (2020) Northern limit of Gondwana in northwestern Mexico from detrital zircon data. Gondwana Research 83, 232–47.CrossRefGoogle Scholar
Vermeesch, P (2018) IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–93.CrossRefGoogle Scholar
Villaseca, C, Merino, E, Oyarzun, R, Orejana, D, Pérez-Soba, C and Chicharro, E (2014) Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research 245, 131–45.CrossRefGoogle Scholar
Watson, EB and Harrison, TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Watson, EB, Wark, DA and Thomas, JB (2006) Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151, 413–33.CrossRefGoogle Scholar
Winchester, JA and Floyd, PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Yang, AY, Langmuir, CH, Cai, Y, Michael, P, Goldstein, SL and Chen, Z (2021) A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nature Communications 12, 110.Google ScholarPubMed
Zavala-Monsiváis, A, Barboza-Gudiño, JR, Velasco-Tapia, F and García-Arreola, ME (2012) Jurassic volcanic succession in the Charcas area, San Luis Potosi: contribution to understanding the Nazas Arc in northeastern Mexico. Boletin de la Sociedad Geologica Mexicana 64, 277–93.Google Scholar
Zellmer, GF, Pistone, M, Iizuka, Y, Andrews, BJ, Gómez-Tuena, A, Straub, SM and Cottrell, E (2016) Petrogenesis of antecryst-bearing arc basalts from the Trans-Mexican Volcanic Belt: insights into along-arc variations in magma-mush ponding depths, H2O contents, and surface heat flux. American Mineralogist 101, 2405–22.CrossRefGoogle Scholar
Zepeda-Martínez, M, Martini, M, Solari, LA and Mendoza-Rosales, CC (2021) Reconstructing the tectono-sedimentary evolution of the Early–Middle Jurassic Tlaxiaco Basin in southern Mexico: new insights into the crustal attenuation history of southern North America during Pangea breakup. Geosphere 17, 1294–317.CrossRefGoogle Scholar
Zhong, S, Zhang, N, Li, ZX and Roberts, JH (2007) Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters 261, 551–64.CrossRefGoogle Scholar
Supplementary material: PDF

Parolari et al. supplementary material

Parolari et al. supplementary material 1

Download Parolari et al. supplementary material(PDF)
PDF 1 MB
Supplementary material: File

Parolari et al. supplementary material

Parolari et al. supplementary material 2

Download Parolari et al. supplementary material(File)
File 81.6 KB