Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T05:52:09.812Z Has data issue: false hasContentIssue false

Platinum-group element geochemistry of intraplate basalts from the Aleppo Plateau, NW Syria

Published online by Cambridge University Press:  10 December 2012

GEORGE S.-K. MA*
Affiliation:
Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
JOHN MALPAS
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
JIAN-FENG GAO
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
KUO-LUNG WANG
Affiliation:
Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
LIANG QI
Affiliation:
State Key Lab of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
COSTAS XENOPHONTOS
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
*
Author for correspondence: georgema@graduate.hku.hk

Abstract

Early–Middle Miocene intraplate basalts from the Aleppo Plateau, NW Syria have been analysed for their platinum-group elements (PGEs). They contain extremely low PGE abundances, comparable with most alkali basalts, such as those from Hawaii, and mid-ocean ridge basalts. The low abundances, together with high Pd/Ir, Pt/Ir, Ni/Ir, Cu/Pd, Y/Pt and Cu/Zr are consistent with sulphide fractionation, which likely occurred during partial melting and melt extraction within the mantle. Some of the basalts are too depleted in PGEs to be explained solely by partial melting of a primitive mantle-like source. Such ultra-low PGE abundances, however, are possible if the source contains some mafic lithologies. Many of the basalts also exhibit suprachondritic Pd/Pt ratios of up to an order of magnitude higher than primitive mantle and chondrite, an increase too high to be attributable to fractionation of spinel and silicate minerals alone. The elevated Pd/Pt, associated with a decrease in Pt but not Ir and Ru, are also inconsistent with removal of Pt-bearing PGE minerals or alloys, which should have concurrently lowered Pt, Ir and Ru. In contrast, melting of a metasomatized source comprising sulphides whose Pt and to a lesser extent Rh were selectively mobilized through interaction with silicate melts, may provide an explanation.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, L., Walker, R. J., Puchtel, I. S., Pitcher, L., Jelínek, E. & Strnad, L. 2009. Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: a study of the upper mantle profile beneath Central Europe. Geochimica et Cosmochimica Acta 73, 2400–14.Google Scholar
Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., Laurenz, V. & Berndt, J. 2006. Fractionation of the noble metals by physical processes. Contributions to Mineralogy and Petrology 152, 667–84.Google Scholar
Barnes, S.-J. & Maier, W. D. 1999. The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids. In Dynamic Processes in Magmatic Ore Deposits and Their Application in Mineral Exploration (eds Keays, R. R., Lesher, C. M., Lightfoot, P. C. & Farrow, C. E. G.), pp. 69106. Geological Association of Canada, Short Course Volume 13.Google Scholar
Bézos, A., Lorand, J.-P., Humler, E. & Gros, M. 2005. Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic and Indian Oceans. Geochimica et Cosmochimica Acta 69, 2613–27.Google Scholar
Bockrath, C., Ballhaus, C. & Holzheid, A. 2004. Fractionation of the platinum-group elements during mantle melting. Science 305, 1951–3.Google Scholar
Brügmann, G. E., Naldrett, A. J., Asif, M., Lightfoot, P. C., Gorbachev, N. S. & Fedorenko, V. A. 1993. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia. Geochimica et Cosmochimica Acta 57, 2001–18.Google Scholar
Büchl, A., Brügmann, G., Batanova, V., Münker, C. & Hofmann, A. W. 2002. Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth and Planetary Science Letters 204, 385402.Google Scholar
Campbell, I. H. & Naldrett, A. J. 1979. The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology 74, 1503–6.Google Scholar
Chazey, W. J. III & Neal, C. R. 2005. Platinum-group element constraints on source composition and magma evolution of the Kerguelen Plateau using basalts from ODP Leg 183. Geochimica et Cosmochimica Acta 69, 4685–701.Google Scholar
Chou, C.-L. 1978. Fractionation of siderophile elements in the Earth's upper mantle. Proceedings of the Lunar and Planetary Science Conference 9, 219–30.Google Scholar
Crocket, J. H. 2002. Platinum-group elements in basalts from Maui, Hawai'i: low abundances in alkali basalts. Canadian Mineralogist 40, 595609.CrossRefGoogle Scholar
Crocket, J. H. & Paul, D. K. 2008. Platinum-group elements in igneous rocks of the Kutch rift basin, NW India: implications for relationships with the Deccan volcanic province. Chemical Geology 248, 239–55.Google Scholar
Davidson, I., Al-Kadasi, M., Al-Khirbash, S., Al-Subbary, A. K., Baker, J., Blakey, S., Bosence, D., Dart, C., Heaton, R., McClay, K., Menzies, M., Nichols, G., Owen, L. & Yelland, A. 1994. Geological evolution of the southeastern Red Sea Rift margin, Republic of Yemen. Geological Society of America Bulletin 106, 1474–93.2.3.CO;2>CrossRefGoogle Scholar
Evans, N. J., Davis, J. J., Byrne, J. P. & French, D. 2003. Contamination-free preparation of geological samples for ultra-trace gold and platinum-group element analysis. Journal of Geochemical Exploration 80, 1924.Google Scholar
Fleet, M. E., Stone, W. E. & Crocket, J. H. 1991. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta 55, 2545–54.Google Scholar
Govindaraju, K. 1994. 1994 Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1158.Google Scholar
Hamlyn, P. R. & Keays, R. R. 1986. Sulfur saturation and second-stage melts; application to the Bushveld platinum metal deposits. Economic Geology 81, 1431–45.Google Scholar
Hamlyn, P. R., Keays, R. R., Cameron, W. E., Crawford, A. J. & Waldron, H. M. 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta 49, 1797–811.Google Scholar
Ireland, T. J., Walker, R. J. & Garcia, M. O. 2009. Highly siderophile element and 187Os isotope systematics of Hawaiian picrites: implications for parental melt composition and source heterogeneity. Chemical Geology 260, 112–28.Google Scholar
Ivanov, A. V. 2007. Evaluation of different models for the origin of the Siberian Traps. In Plates, Plumes and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.), pp. 669–91. Geological Society of America Special Papers 430.Google Scholar
Ivanov, A. V., Palesskii, S. V., Demonterova, E. I., Nikolaeva, I. V., Ashchepkov, I. V. & Rasskazov, S. V. 2008. Platinum-group elements and rhenium in mantle xenoliths from the East Sayan volcanic field (Siberia, Russia): evaluation of melt extraction and refertilization processes in lithospheric mantle of the Tuva-Mongolian massif. Terra Nova 20, 504–11.Google Scholar
Keays, R. R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 34, 118.Google Scholar
Kepezhinskas, P. & Defant, M. J. 2001. Nonchondritic Pt/Pd ratios in arc mantle xenoliths: evidence for platinum enrichment in depleted island-arc mantle sources. Geology 29, 851–4.Google Scholar
Kerr, A. 2003. Nickeliferous gabbroic intrusions of the Pants Lake area, Labrador, Canada: implications for the development of magmatic sulfides in mafic systems. American Journal of Science 303, 221–58.Google Scholar
Krienitz, M.-S., Haase, K. M., Mezger, K., van den Bogaard, P., Thiemann, V. & Shaikh-Mashail, M. A. 2009. Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: constraints from geochemistry and Ar-Ar dating of Syrian lavas. Geochemistry, Geophysics, Geosystems 10, Q04008, doi: 10.1029/2008GC002254, 26 pp.Google Scholar
Lee, C.-T. A. 2002. Platinum-group element geochemistry of peridotite xenoliths from the Sierra Nevada and the Basin and Range, California. Geochimica et Cosmochimica Acta 66, 39874005.Google Scholar
Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., Naldrett, A. J., Gorbachev, N. S., Fedorenko, V. A. & Doherty, W. 1994. Chemostratigraphy of the Siberian Trap Lava, Noril'sk district, Russia. Implications for sources of flood basalt magma and their associated Ni-Cu mineralization. In The Sudbury-Noril'sk Symposium (eds Lightfoot, P. C. & Naldrett, A. J.), pp. 283–3–2. Special Volume Ontario Geological Survey 5.Google Scholar
Lightfoot, P. C. & Keays, R. R. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril'sk region: implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geology 100, 439–62.Google Scholar
Luguet, A., Alard, O., Lorand, J. P., Pearson, N. J., Ryan, C. & O'Reilly, S. Y. 2001. Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth and Planetary Science Letters 189, 285–94.Google Scholar
Luguet, A., Lorand, J.-P., Alard, O. & Cottin, J.-Y. 2004. A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chemical Geology 208, 175–94.Google Scholar
Lustrino, M., Keskin, M., Mattioli, M., Lebedev, V., Chugaev, A., Sharkov, E. V. & Kavak, O. 2010. Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadağ, SE Turkey. European Journal of Mineralogy 22, 343–62.Google Scholar
Lustrino, M. & Wilson, M. 2007. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Science Reviews 81, 165.CrossRefGoogle Scholar
Ma, G. S.-K., Malpas, J., Suzuki, K., Lo, C.-H., Wang, K.-L., Iizuka, Y. & Xenophontos, C. In press. Evolution and origin of the Miocene intraplate basalts on the Aleppo Plateau, NW Syria. Chemical Geology. Available online 12 November 2012. doi:10.1016/j.chemgeo.2012.11.001 Google Scholar
Ma, G. S.-K., Malpas, J., Xenophontos, C. & Chan, G. H.-N. 2011 a. Petrogenesis of latest Miocene–Quaternary continental intraplate volcanism along the northern Dead Sea Fault System (Al Ghab–Homs Volcanic Field), western Syria: evidence for lithosphere–asthenosphere interaction. Journal of Petrology 52, 401–30.Google Scholar
Ma, G. S.-K., Malpas, J., Xenophontos, C., Suzuki, K. & Lo, C.-H. 2011 b. Early Cretaceous volcanism of the Coastal Ranges, NW Syria: magma genesis and regional dynamics. Lithos 126, 290306.Google Scholar
Mavrogenes, J. A. & O'Neill, H. St C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta 63, 1173–80.Google Scholar
Meisel, T. & Moser, J. 2004. Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chemical Geology 208, 319–38.Google Scholar
Momme, P., Tegner, C., Brooks, K. & Keays, R. 2002. The behaviour of platinum-group elements in basalts from the East Greenland rifted margin. Contributions to Mineralogy and Petrology 143, 133–53.Google Scholar
Morgan, J. W., Walker, R. J., Brandon, A. D. & Horan, M. F. 2001. Siderophile elements in Earth's upper mantle and lunar breccias: data synthesis suggests manifestations of the same late influx. Meteoritics and Planetary Science 36, 1257–75.Google Scholar
Mouty, M., Delaloye, M., Fontignie, D., Piskin, O. & Wagner, J. J. 1992. The volcanic activity in Syria and Lebanon between Jurassic and Actual. Schweizerische Mineralogische und Petrographische Mitteilungen 72, 91105.Google Scholar
Mungall, J. E., Hanley, J. J., Arndt, N. T. & Debecdelievre, A. 2006. Evidence from meimechites and other low-degree mantle melts for redox controls on mantle-crust fractionation of platinum-group elements. Proceedings of the National Academy of Sciences 103, 12695–700.Google Scholar
Pagé, P., Barnes, S.-J., Bédard, J. H. & Zientek, M. L. 2012. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chemical Geology 302–303, 315.Google Scholar
Palme, H. & O'Neill, H. St C. 2003. Cosmochemical estimates of mantle composition. In The Mantle and Core (ed. Carlson, R. W.), pp. 138. Treatise on Geochemistry Vol. 2. Oxford: Elsevier–Pergamon.Google Scholar
Peach, C. L., Mathez, E. A., Keays, R. R. & Reeves, S. J. 1994. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chemical Geology 117, 361–77.Google Scholar
Puchtel, I. S. & Humayun, M. 2001. Platinum group element fractionation in a komatiitic basalt lava lake. Geochimica et Cosmochimica Acta 65, 2979–93.Google Scholar
Qi, L., Wang, C. Y. & Zhou, M.-F. 2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China. Lithos 106, 222–36.Google Scholar
Qi, L. & Zhou, M. F. 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chemical Geology 248, 83103.Google Scholar
Qi, L., Zhou, M.-F. & Wang, C. Y. 2004. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS. Journal of Analytical Atomic Spectrometry 19, 1335–9.Google Scholar
Qi, L., Zhou, M.-F., Wang, C. Y. & Sun, M. 2007. Evaluation of the determination of Re and PGEs abundance of geological samples by ICP-MS coupled with a modified Carius tube digestion at different temperatures. Geochemical Journal 41, 407–14.Google Scholar
Rehkämper, M., Halliday, A. N., Fitton, J. G., Lee, D.-C., Wieneke, M. & Arndt, N. T. 1999. Ir, Ru, Pt, and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochimica et Cosmochimica Acta 63, 3915–34.Google Scholar
Righter, K., Campbell, A. J., Humayun, M. & Hervig, R. L. 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta 68, 867–80.Google Scholar
Sharkov, E. V., Chernyshev, I. V., Devyatkin, E. V., Dodonov, A. E., Ivanenko, V. V., Karpenko, M. I., Leonov, Y. G., Novikov, V. M., Hanna, S. & Khatib, K. 1994. Geochronology of Late Cenozoic basalts in western Syria. Petrology 2, 439–48.Google Scholar
Song, X.-Y., Keays, R. R., Xiao, L., Qi, H.-W. & Ihlenfeld, C. 2009. Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chemical Geology 262, 246–61.Google Scholar
Tistl, M. 1994. Geochemistry of platinum-group elements of the zoned ultramafic Alto Condoto Complex, Northwest Colombia. Economic Geology 89, 158–67.Google Scholar
Trifonov, V. G., Dodonov, A. E., Sharkov, E. V., Golovin, D. I., Chernyshev, I. V., Lebedev, V. A., Ivanova, T. P., Bachmanov, D. M., Rukieh, M., Ammar, O., Minini, H., Kafri, A. A. & Ali, O. 2011. New data on the Late Cenozoic basaltic volcanism in Syria, applied to its origin. Journal of Volcanology and Geothermal Research 199, 177–92.Google Scholar
Vogel, D. C. & Keays, R. R. 1997. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia. Chemical Geology 136, 181204.Google Scholar
Wang, C. Y., Zhou, M.-F. & Qi, L. 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)–Song Da (northern Vietnam) district: mantle sources, crustal contamination and sulfide segregation. Chemical Geology 243, 317–43.Google Scholar
Wang, C. Y., Zhou, M.-F. & Qi, L. 2011. Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province, SW China. Contributions to Mineralogy and Petrology 161, 237–54.Google Scholar
Wood, S. A. 1987. Thermodynamic calculations of the volatility of the platinum group elements (PGE): the PGE content of fluids at magmatic temperatures. Geochimica et Cosmochimica Acta 51, 3041–50.Google Scholar
Yang, A. Y., Zhao, T., Qi, L., Yang, S. & Zhou, M. 2011. Chalcophile elemental constraints on sulfide-saturated fractionation of Cenozoic basalts and andesites in SE China. Lithos 127, 323–35.Google Scholar
Supplementary material: File

Ma Supplementary Material

Appendix

Download Ma Supplementary Material(File)
File 389.1 KB