Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T15:50:34.926Z Has data issue: false hasContentIssue false

Reconstruction of the Cryogenian palaeogeography in the Yangtze Domain: constraints from detrital age patterns

Published online by Cambridge University Press:  20 August 2018

YU LIU
Affiliation:
School of Earth Sciences, China University of Geosciences Wuhan, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
KUNGUANG YANG*
Affiliation:
School of Earth Sciences, China University of Geosciences Wuhan, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
ALI POLAT
Affiliation:
Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada Centre for Global Tectonics, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, 430074, China
XIAO MA
Affiliation:
School of Earth Sciences, China University of Geosciences Wuhan, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
*
Author for correspondence: yangkunguang@163.com

Abstract

Detrital zircons are often used to constrain the maximum sedimentary age of strata and sedimentary provenance. This study aimed at reconstructing the Cryogenian palaeogeography of the Yangtze Domain based on U–Pb ages and Lu–Hf isotopic signatures of detrital zircons from sandstones in the southeastern part of the Yangtze Domain. U–Pb ages of the youngest detrital zircon grains from the Niuguping, Gucheng and Datangpo formations yielded average ages of 712±24 Ma, 679.2±6.2 Ma and 665.1±7.4 Ma, respectively, which are close to the depositional ages of their respective formations. An integrated study of detrital zircon Lu–Hf isotopes and U–Pb ages from three samples revealed six main peak ages in the samples from the Anhua section at c. 680 Ma, c. 780 Ma, c. 820 Ma, c. 940 Ma, c. 2000 Ma and c. 2500 Ma. The characteristics of the U–Pb ages and Hf isotopes indicate a link between the north and southeast margins of the Yangtze Domain as early as c. 680 Ma, and the provenance of the coeval sedimentary sequences in the SE Yangtze Domain was the South Qinling Block on the northern margin of the Yangtze Domain. The provenance analysis on the c. 680 Ma detritus composing upper Neoproterozoic strata in the Yangtze Domain revealed that the detritus was transported southward from South Qinling to the southeast margin of the Yangtze Domain through the Exi Strait, but was hindered by the Jiangnan Orogenic Belt.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology 216, 249–70.CrossRefGoogle Scholar
Andersen, T., Kristoffersen, M. & Elburg, M. A. 2016. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study. Gondwana Research 34, 129–48.CrossRefGoogle Scholar
Barfod, G. H., Albarède, F., Knoll, A. H., Xiao, S. H., Télouk, P., Frei, R. & Baker, J. 2002. New Lu–Hf and Pb–Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters 201, 203–12.CrossRefGoogle Scholar
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y. & Pearson, N. J. 2012. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457–66.CrossRefGoogle Scholar
Blichert-Toft, J., Chauvel, C. & Albarède, F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 127 (3), 248–60.CrossRefGoogle Scholar
Cai, Z. Y., Xiong, X. L., Luo, H., Wu, D. K., Sun, S. C., Rao, B. L. & Wang, S. Q. 2007. Forming age of the volcanic rocks of the Yaolinghe Group from Wudang block, Southern Qinling Mountain: constraint from grain-zircon U–Pb dating. Acta Geologica Sinica 81 (5), 620–5 (in Chinese with English abstract).Google Scholar
Charvet, J. 2013. The Neoproterozoic–Early Paleozoic tectonic evolution of the South China Block: an overview. Journal of Asian Earth Sciences 74, 198209.CrossRefGoogle Scholar
Chen, Q., Sun, M., Long, X., Zhao, G. C., Wang, J., Yu, Y. & Yuan, C. 2016. U–Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian–Devonian sedimentary rocks of the western Yangtze Block: implications for its tectonic evolution and continental affinity. Gondwana Research 31, 184–99.CrossRefGoogle Scholar
Chen, Q., Sun, M., Long, X., Zhao, G. C., Wang, J., Yu, Y. & Yuan, C. 2018. Provenance study for the Paleozoic sedimentary rocks from the West Yangtze Block: constraint on possible link of South China to the Gondwana supercontinent reconstruction. Precambrian Research 309, 271–89.CrossRefGoogle Scholar
Chen, D. F., Dong, W. Q., Zhu, B. Q. & Chen, X. P. 2004. Pb–Pb ages of Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glaciation events. Precambrian Research 132, 123–32.CrossRefGoogle Scholar
Chinese Academy of Geological Sciences (CAGS). 2004. Geological Map of China, Scale 1:2,500,000. Beijing: Geological Publishing House (in Chinese).Google Scholar
Chu, X. L., Todt, W., Zhang, Q. R., Chen, F. K. & Huang, J. 2005. U–Pb zircon age for the Nanhua–Sinian boundary. Chinese Science Bulletin 50, 716–8.CrossRefGoogle Scholar
Condon, D., Zhu, M. Y., Bowring, S., Wang, W., Yang, A. H. & Jin, Y. G. 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation. China: Science 308, 95–8.Google ScholarPubMed
Dong, Y. P. & Santosh, M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research 29, 140.CrossRefGoogle Scholar
Dong, Y. P., Zhang, G. W., Neubauer, F., Liu, X. M., Genser, J. & Hauzenberger, C. 2011. Tectonic evolution of the Qinling orogen, China: review and synthesis. Journal of Asian Earth Sciences 41, 213–37.CrossRefGoogle Scholar
Du, Q. D., Wang, Z. J., Wang, J., Qiu, Y. S., Jiang, X. S., Deng, Q. & Yang, F. 2013. Geochronology and paleoenvironment of the pre-Sturtian glacial strata: evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China. Precambrian Research 233, 118–31.CrossRefGoogle Scholar
Fanning, C. M. & Link, P. K. 2004. U–Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology 32, 881–4.CrossRefGoogle Scholar
Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2003. Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry 53, 277303.CrossRefGoogle Scholar
Fonneland, H. C., Lien, T., Martinsen, O. J., Pedersen, R. B. & Kosler, J. 2004. Detrital zircon ages: a key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sedimentary Geology 164, 147–59.CrossRefGoogle Scholar
Gao, L. Z., Lu, J. P., Ding, X. Z., Wang, H. R., Liu, X. Y. & Li, J. 2013. Zircon U–Pb dating of Neoproterozoic tuff in South Guangxi and its implications for stratigraphic correlation. Geology in China. 40 (5), 1443–52.Google Scholar
Gehrels, G. E. 2012. Detrital zircon U–Pb geochronology: current methods and new opportunities. In Tectonics of Sedimentary Basins: Recent Advances (eds Busby, C. & Azor, A.), pp. 4562. Oxford, UK: Blackwell Publishing Ltd.CrossRefGoogle Scholar
Guo, X. Q., Yan, Z., Wang, Z. Q., Fu, C. L. & Chen, L. 2014. Tectonic setting of Lijiabian Ti–Fe deposit in Shanyang–Zhashui ore concentration area, Qinling Orogen. Acta Petrologica Sinica 30 (2), 437–50.Google Scholar
Han, K. Y., Wang, L, Ding, X. Z., Ren, L. D., Gao, L. Z., Liu, Y. X., Pang, J. F. & Xue, J. H. 2016. Provenance of sedimentary rocks of Nanhua System in the northern Guangxi Province: evidence from detrital zircon U–Pb ages. Acta Petrologica Sinica 32 (7), 2166–80 (in Chinese with English abstract).Google Scholar
Hofmann, H., Linnemann, U., Rai, V., Baecker, S., Gärtner, A. & Sagawe, A. 2011. The India and South China cratons at the margin of Rodinia – synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses. Lithos 123, 176–87.CrossRefGoogle Scholar
Hu, R., Li, S. Q., Wang, W. & Chen, F. K. 2016. Source characteristics of tillite in the Nantuo Formation in the Three Gorges, Northern Yangtze Block: evidences from zircon ages and geochemical composition. Earth Science 41 (10), 1630–54 (in Chinese with English abstract).Google Scholar
Hu, J., Liu, X. C., Chen, L. Y., Qu, W., Li, H. K. & Geng, J. Z. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: evidence from U–Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin 58 (28–29), 3564–79.CrossRefGoogle Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Yang, L., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H. & Zhou, L. 2012a. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.CrossRefGoogle Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Xiao, S. Q., Zhao, L. S., Günther, D., Li, M., Zhang, W. & Zong, K. Q. 2012b. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 78, 50–7.CrossRefGoogle Scholar
Hu, F. Y., Liu, S. W., Santosh, M., Deng, Z. B., Wang, W., Zhang, W. Y. & Yan, M. 2016. Chronology and tectonic implications of Neoproterozoic blocks in the South Qinling Orogenic Belt, Central China. Gondwana Research 30, 2447.CrossRefGoogle Scholar
Jahn, B. M., Gallet, S. & Han, J. M. 2001. Geochemistry of the Xining, Xifeng, and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology 178, 7194.CrossRefGoogle Scholar
Lan, Z. W., Li, X. H., Zhu, M. Y., Zhang, R. R. & Li, Q. R. 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance. Precambrian Research 263, 123–41.CrossRefGoogle Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Funk, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, X. H., Li, W. X. & He, B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia Supercontinent: observations, interpretations and tests. Bulletin of Mineralogy, Petrology and Geochemistry 31 (6), 543–59 (in Chinese with English abstract).Google Scholar
Li, J. H., Zhang, Y. Q., Xu, X. B., Dong, S. W. & Li, T. D. 2012. Zircon U–Pb LA-ICP-MS dating of Fenghuangshan pluton in Northern Daba mountains and its implications to tectonic settings. Geological Review 58, 581–93 (in Chinese with English abstract).Google Scholar
Ling, W. L., Duan, R. C., Liu, X. M., Cheng, J. P., Mao, X. W., Peng, L. H., Liu, Z. X., Yang, H. M. & Ren, B. F. 2010. U–Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin 55 (22), 2440–8.CrossRefGoogle Scholar
Ling, W. L., Ren, B. F., Duan, R. C., Liu, X. M., Mao, X. W., Peng, L. H., Liu, Z. X., Cheng, J. P. & Yang, H. M. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U–Pb zircon geochronology and tectonic implication. Chinese Science Bulletin 53 (14), 2192–9.Google Scholar
Linol, B., De Wit, M. J., Barton, E., De Wit, M. J. C. & Guillocheau, F. 2016. U–Pb detrital zircon dates and source provenance analysis of Phanerozoic sequences in the Congo Basin, central Gondwana. Gondwana Research 29, 208–19.CrossRefGoogle Scholar
Liu, X. M., Gao, S., Diwu, C. R. & Ling, W. L. 2008. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science 308, 421–68.CrossRefGoogle Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537–71.CrossRefGoogle Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257 (1–2), 3443.CrossRefGoogle Scholar
Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J. & Chen, H. H. 2010b. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55 (15), 1535–46.CrossRefGoogle Scholar
Liu, P. J., Li, X. H., Chen, S. M., Lan, Z. W., Yang, B., Shang, X. D. & Yin, C. Y. 2015. New SIMS U–Pb zircon age and its constraint on the beginning of the Nantuo glaciation. Science Bulletin 60, 958–63.CrossRefGoogle Scholar
Liu, R. Y., Niu, B. G., He, Z. J. & Ren, J. S. 2011. LA-ICP-MS zircon U–Pb geochronology of the eastern part of the Xiaomaoling composite intrusives in Zhashui area, Shansnxi, China. Geological Bulletin of China 30 (2/3), 448–60 (in Chinese with English abstract).Google Scholar
Liu, C. H., Wu, C. L., Gao, Y. H., Lei, M., Qin, H. P. & Li, M. Z. 2014. Zircon LA-ICP-MS U–Pb dating and Lu–Hf isotopic system of Dongjiangkou, Zhashui, and Liyuantang granitoid intrusions, South Qinling belt, central China. Acta Petrologica Sinica 30 (8), 2402–20 (in Chinese with English abstract).Google Scholar
Liu, B. J. & Xu, X. S. 1994. The Paleogeographic Atlas in South China. Beijing: Science Press, 1188 pp. (in Chinese).Google Scholar
Ludwig, K. R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California, Berkeley: Berkeley Geochronology Center, 39 pp.Google Scholar
McCulloch, M. T., Rosman, K. J. R. & De Laeter, J. R. 1977. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochimica et Cosmochimica Acta 41, 1703–7.CrossRefGoogle Scholar
McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, doi: 10.1029/2000GC000109.CrossRefGoogle Scholar
Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S. C., Bhargava, O. N., Parcha, S. K. & Pogue, K. R. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geological Society of America Bulletin 122, 1660–70.CrossRefGoogle Scholar
Nie, H., Yao, J., Wan, X., Zhu, X. Y., Wolfgang, S. & Chen, F. K. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf–Nd isotopic compositions of basement rocks. Precambrian Research 286, 167–79.CrossRefGoogle Scholar
Niu, B. G., He, Z. J., Ren, J. S., Wang, J. & Deng, P. 2006. SHRIMP U–Pb ages of zircons from the intrusions in the western Douling–Xiaomaoling Uplift and their geological significances. Geological Review 52, 826–35 (in Chinese with English abstract).Google Scholar
Pi, D. H. & Jiang, S. Y. 2016. U–Pb dating of zircons from tuff layer, sandstone and tillite samples in the uppermost Liantuo Formation and the lowermost Nantuo Formation in Three Gorges area, South China. Chemie der Erde 76, 103–9.CrossRefGoogle Scholar
Qiu, Y. M., Gao, S., McNaughton, N. J., Groves, D. I. & Ling, W. L. 2000. First evidence of ≥3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 11–4.2.0.CO;2>CrossRefGoogle Scholar
Rainbird, R. H., Hamilton, M. A. & Young, G. M. 2001. Detrital zircon geochronology and provenance of the Torridonian, NW Scotland. Journal of the Geological Society, London 158, 1527.CrossRefGoogle Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. In Treatise on Geochemistry, Volume 3 (ed. Rudnick, R. L.), pp. 164.Google Scholar
Shi, Y., Yu, J. H. & Santosh, M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U–Pb geochronology and Hf isotopes. Precambrian Research 231, 1960.CrossRefGoogle Scholar
Shu, L. S. 2006. Predevonian tectonic evolution of South China: from Cathaysian Block to Caledonian period folded orogenic belt. Geological Journal of China Universities 12 (4), 418–31.Google Scholar
Shu, L. S. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China 31 (7), 1035–53.Google Scholar
Sun, M., Chen, N. S., Zhao, G. C., Wilde, S. A., Ye, K., Guo, J. H., Chen, Y. & Yuan, C. 2008. U–Pb zircon and Sm–Nd isotopic study of the Huangtuling granulite, Dabie–Sulu belt, China: implication for the Paleoproterozoic tectonic history of the Yangtze craton. American Journal of Science 308, 469–83.CrossRefGoogle Scholar
Wang, W., Cawood, P. A., Zhou, M. F., Pandit, M. K. & Chen, W. T. 2017. Zircon U–Pb age and Hf isotope evidence for an Eoarchean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India. Journal of the Geological Society, London 174, 759–72.CrossRefGoogle Scholar
Wang, W., Cawood, P. A., Zhou, M. F. & Zhao, J. H., 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent. Earth and Planetary Science Letters 433, 269–79.CrossRefGoogle Scholar
Wang, W., Chen, F. K., Hu, R., Chu, Y. & Yang, Y. Z. 2012a. Provenance and tectonic setting of Neoproterozoic sedimentary sequences in the South China Block: evidence from detrital zircon ages and Hf–Nd isotopes. International Journal of Earth Sciences (Geologische Rundschau) 101, 1723–44.CrossRefGoogle Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research 177 (1), 131–44.CrossRefGoogle Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2013. U–Pb and Lu–Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: implications for Precambrian crustal evolution. Gondwana Research 23, 1261–72.CrossRefGoogle Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, R. R., Xu, Z. Q., Santosh, M., Yao, Y., Gao, L. E. & Liu, C. H. 2016. Late Neoproterozoic magmatism in South Qinling, Central China: geochemistry, zircon U–Pb–Lu–Hf isotopes and tectonic implications. Tectonophysics 683, 4361.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Liu, X. M. & Zhang, G. L. 2006. LA-ICP-MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Research 145, 111–30.CrossRefGoogle Scholar
Wang, W., Zhou, M. F., Yan, D. P. & Li, J. W. 2012b. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Research 192–195, 107–24.CrossRefGoogle Scholar
Wang, W., Zhou, M. F., Yan, D. P., Li, L. & John, M. 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China. Precambrian Research 235, 119.CrossRefGoogle Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. & Kemp, R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–35.CrossRefGoogle Scholar
Wu, Y. B., Chen, D. G., Xia, Q. K., Deloule, E. & Chen, H. 2002. SIMS U–Pb dating of zircons in granulite of Huangtuling from Northern Dabieshan. Acta Petrologica Sinica 18 (3), 378–82 (in Chinese with English abstract).Google Scholar
Wu, Y. B., Gao, S., Gong, H. J., Xiang, H., Jiao, W. F., Yang, S. H., Liu, Y. S. & Yuan, H. L. 2009. Zircon U–Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology 27 (6), 461–77.CrossRefGoogle Scholar
Wu, Y. B., Gao, S., Zhang, H., Zheng, J. P., Liu, X., Wang, H., Gong, H., Zhou, L. & Yuan, H. 2012. Geochemistry and zircon U–Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications. Precambrian Research 200, 2637.CrossRefGoogle Scholar
Wu, F. F., Wang, Z. Q., Wang, T., Yan, Z. & Chen, L. 2012. SHRIMP zircon U–Pb ages and geochemical characteristics of the Banbanshan K-feldspar granite in Shanyang, Southern Qinling Orogenic Belt. Journal of Mineralogy and Petrology 32 (2), 6373 (in Chinese with English abstract).Google Scholar
Wu, Y. B., Zhou, G. Y., Gao, S., Liu, X. C., Qin, Z. W., Wang, H., Yang, J. Z. & Yang, S. H. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research 254, 7386.CrossRefGoogle Scholar
Xia, L. Q., Xia, Z. C., Li, X. M., Ma, Z. P. & Xu, X. Y. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling mountains. Northwestern Geology 41 (3), 129 (in Chinese with English abstract).Google Scholar
Xia, Y., Xu, X., Niu, Y. & Liu, L. 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision. Precambrian Research 309, 5687.CrossRefGoogle Scholar
Xiao, S. H., Tucker, R., Peng, Z. X. & Zhou, C. M. 2004. New constraints on the ages of Neoproterozoic glaciations in South China. Geology 32, 437–40.Google Scholar
Yan, M., Liu, S. W., Li, Q. G., Yang, P. T., Wang, W., Guo, R. R., Bai, X. & Deng, Z. B. 2014. LA-ICP-MS zircon U–Pb chronology and Lu–Hf isotopic features of the Mihunzhen pluton in the South Qinling tectonic belt. Acta Petrologica Sinica 30 (2), 390400.Google Scholar
Yang, P. T., Liu, S. W., Li, Q. G., Wang, Z. Q., Wang, W. & Bai, X. 2012. Emplacing age of the Tiewadian pluton in the South Qinling tectonic belt and its geological implications. Acta Geologica Sinica 86, 1525–40 (in Chinese with English abstract).Google Scholar
Yang, Z. N., Yang, K. G., Polat, A. & Xu, Y. 2018. Early crustal evolution of the eastern Yangtze Block: evidence from detrital zircon U–Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan Area. Precambrian Research 309, 248–70.CrossRefGoogle Scholar
Yin, C. Q., Lin, S. F., Davis, D. W., Zhao, G. C., Xiao, W. J., Li, L. M. & He, Y. H., 2013. 2.1–1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos 182, 200–10.CrossRefGoogle Scholar
Yin, C. Y, Tang, F., Liu, Y. Q., Gao, L. Z., Liu, P. J., Xing, Y. S., Yang, Z. Q., Wan, Y. S. & Wang, Z. Q. 2005a. U–Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: constraint on the age of Marinoan glaciation. Episodes 28, 48–9.Google Scholar
Yin, C. Y., Tang, F., Liu, Y. Q., Gao, L. Z., Yang, Z. Q., Wang, Z. Q., Liu, P. J., Xing, Y. S. & Song, B. 2005b. New U–Pb zircon ages from the Ediacaran (Sinian) System in the Yangtze Gorges: constraint on the age of Miaohe biota and Marinoan glaciation. Geological Bulletin of China 24, 393400.Google Scholar
Yin, C. Y., Wang, Y. G., Tang, F., Wan, Y. S., Wang, Z. Q., Gao, L. Z., Xing, Y. S. & Liu, P. J. 2006. SHRIMP II U–Pb zircon date from the Nanhuan Datangpo Formation in Songtao County, Guizhou Province. Acta Geologica Sinica 80 (2), 273–8 (in Chinese with English abstract).Google Scholar
Yu, W. C., Du, Y. S., Zhou, Q., Wang, P., Yuan, L. J., Xu, Y., Pan, W., Xie, X. F., Qi, L. & Jiao, L. X. 2016. LA-ICP-MS zircon U–Pb dating from the Nanhuan Datangpo Formation in Songtao Area, East Guizhou and its geological significance. Geological Review 3, 539–49 (in Chinese with English abstract).Google Scholar
Zhang, S. H., Jiang, G. Q. & Han, Y. G. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova 20, 289–94.CrossRefGoogle Scholar
Zhang, S. H., Jiang, G. Q., Zhang, J. M., Song, B., Kennedy, M. J. & Christie-Blick, N. 2005. U–Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: constraints on late Neoproterozoic glaciations. Geology 33, 473–6.CrossRefGoogle Scholar
Zhang, C. L., Li, M., Wang, T., Yuan, H. L. & Yan, Y. X. 2004. U–Pb zircon geochronology and geochemistry of granitoids in the Douling Group in the Eastern Qinling. Acta Geologica Sinica 78 (1), 8395.Google Scholar
Zhang, C. L., Santosh, M., Zhu, Q. B., Chen, X. Y. & Huang, W. C. 2015. The Gondwana connection of South China: evidence from monazite and zircon geochronology in the Cathaysia block. Gondwana Research 28, 1137–51.CrossRefGoogle Scholar
Zhang, J. Y., Yin, A., Liu, W. C., Wu, F. Y., Lin, D. & Grove, M. 2012. Coupled U–Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: constraints on the transport processes and evolution of Himalayan rivers. Geological Society of America Bulletin 124, 1449–73.CrossRefGoogle Scholar
Zhang, Y. Q., Zhang, J., Li, H. K. & Lu, S. N. 2013. Zircon U–Pb geochronology of the meta-acidic volcanic rocks from the Wudangshan Group, Southern Qinling Mountains, Central China. Acta Geologica Sinica 87 (7), 922–30 (in Chinese with English abstract).Google Scholar
Zhang, G. W., Zhang, B. R., Yuan, X. C. & Xiao, Q. H. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 855 pp.Google Scholar
Zhang, S. B. & Zheng, Y. F. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research 23, 1241–60.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006a. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters 252, 5671.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006b. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146, 1634.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006c. Zircon U–Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.CrossRefGoogle Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. & Li, J. W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian Orogeny. Geology 39, 299302.CrossRefGoogle Scholar
Zheng, Y. F. & Zhang, S. B. 2007. Formation and evolution of Precambrian continental crust in South China. Chinese Science Bulletin 52 (1), 110 (in Chinese with English abstract).CrossRefGoogle Scholar
Zhu, X. Y., Chen, F. K., Liu, B. X. & Zhang, H. 2015. Geochemistry and zircon ages of mafic dikes in the South Qinling, central China: evidence from late Neoproterozoic continental rifting in the northern Yangtze Block. International Journal of Earth Sciences (Geologische Rundschau) 104, 2744.10.1007/s00531-014-1056-zCrossRefGoogle Scholar
Zhu, X. Y., Chen, F. K., Nie, H., Siebel, W., Yang, Y. Z., Xue, Y. Y. & Zhai, M. G. 2014. Neoproterozoic tectonic evolution of South Qinling, China: evidence from zircon ages and geochemistry of the Yaolinghe volcanic rocks. Precambrian Research 245, 115–30.10.1016/j.precamres.2014.02.005CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Table S1

Download Liu et al. supplementary material(File)
File 95.5 KB
Supplementary material: File

Liu et al. supplementary material

Table S2

Download Liu et al. supplementary material(File)
File 40.7 KB
Supplementary material: File

Liu et al. supplementary material

Table S3

Download Liu et al. supplementary material(File)
File 47.8 KB