Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T06:24:49.823Z Has data issue: false hasContentIssue false

The role of CO2 in alkali rock genesis

Published online by Cambridge University Press:  01 May 2009

N. M. S. Rock
Affiliation:
Department of Mineralogy and Petrology, Downing Place, Cambridge

Summary

The extreme rarity of alkaline rock suites bearing both calcic plagioclase and magmatic carbonatites is believed to reflect a fundamental bifold division between Gabbroic and Carbonatitic types, plagioclase being present only in the former and carbonatite only in the latter. Alkali basalt magma may be parental to both lineages, the gabbroic lineage deriving from normal differentiation under low CO2 pressure, and the carbonatitic by suppression of plagioclase crystallization under high pressures of CO2, leading through pyroxene fractionation to a ‘secondary parental’ olivine-poor nephelinite magma. Support for this hypothesis is found in evidence for the suppression of plagioclase in CO2-rich alkali basaltic magmas and for the secondary origin of olivine-poor nephelinites, in the nature of xenoliths and cumulates at carbonatite complexes, in Sr isotopic data, and in major and trace element compositions of the magmas. The possible origin of melilitic rocks at carbonatite complexes is also briefly discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. R. & Gittins, J. 1974. The Ultramafic suite associated with carbonatites. GAC-MAC convention, 3rd circular (abstracts), St John's, Newfoundland, p. 1.Google Scholar
Andreyev, G. V. 1959. Contact infiltration skarns in the Konder massif. Dokl. Akad. Nauk USSR, Earth Sci. Sect. 128, 905–6.Google Scholar
Appleyard, E. C. 1974. Syn-orogenic igneous alkali rocks of E. Ontario and N. Norway. Lithos 7, 147–69.CrossRefGoogle Scholar
Bailey, D. K. 1974. Nephelinites and ijolites, pp. 5366. In Sorensen, H. (Ed.): The Alkaline Rocks. Wiley, New York.Google Scholar
Bell, K. & Powell, J. L. 1970. Strontium isotopic studies of alkalic rocks; the alkalic complexes of E. Uganda. Bull. geol. Soc. Am. 81, 3481–90.CrossRefGoogle Scholar
Berger, M. G. 1961. Structure of the Goryachegor alkaline massif. Dokl. Akad. Nauk SSSR. Earth Sci. Sect. 141, 1230–3.Google Scholar
Bonney, T. G. 1902. Sodalite syenite from Ice River. Geol. Mag. 9, 199206.CrossRefGoogle Scholar
Borodin, L. S. 1957. Types of carbonatite deposits and their connection with massifs of alkaline ultrabasic rocks. Isv. Akad. Nauk SSSR., Geol. Ser. 5, 316.Google Scholar
Bowden, P. & Turner, D. C. 1974. Peralkaline and associated ring-complexes in the Nigeria-Niger Province, West Africa, pp. 330–54. In Sorensen, H. (Ed.): The Alkaline Rocks, Wiley, New York.Google Scholar
Bowen, N. L. 1928. Evolution of the Igneous Rocks. Princetown University Press.Google Scholar
Carstens, H. 1959. Comagmatic lamprophyres and diabases of the south coasts of Norway. Beitr. Miner. Petrogr. 6, 299319.Google Scholar
Clark, S. P. 1968. Handbook of physical constants. Mem. geol. Soc. Am. 97, 583 pp.Google Scholar
Dawson, J. B. & Smith, J. V. 1973. Alkali pyroxenite xenoliths from the Lashaine volcano, N. Tanzania. J. Petrology 14, 113–31.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1967. Rock-forming minerals. Vols. 1 and 2. Longman & Co., London.Google Scholar
de Sousa, F. P. 1926. La Serra de Monchique. Bull. géol. Soc. Fr. 4 Sér. 26, 321–50.Google Scholar
Edgar, A. D. 1974. Experimental studies, pp. 355–88. In Sorensen, H. (Ed.): The Alkaline Rocks. Wiley, New York.Google Scholar
Eskola, P., Vuoristo, U. & Rankama, K. 1937. Experimental verification of the spilite reaction. Bull. Commn géol. Finl. 119, 61–8.Google Scholar
Fairbairn, H. W., Faure, G., Pinson, W. H., Hurley, P. M. & Powell, J. L. 1963. Initial ratio of Sr87/86, whole-rock age and discordant biotite in the Monteregian igneous province, Quebec. J. geophys. Res. 68, 6515–22.CrossRefGoogle Scholar
Ferguson, J. & Currie, K. L. 1971. Evidence of liquid immiscibility in alkalic dykes. J. Petrology 12, 561–85.Google Scholar
Fersman, A. 1929. Geochemische Migration der Elemente…Abh. prakt. Geol. BerwLehre 18, 1116.Google Scholar
Gerasimovsky, V. I. 1956. Geochemistry of nepheline syenite intrusions. Geochemistry 494510.Google Scholar
Gold, D. P. 1967. Alkalic ultrabasic rocks in the Montreal Area, pp. 288301. In Wyllie, P. J. (Ed.): Ultramafic and related rocks. Wiley, New York.Google Scholar
Greenwood, H. J. 1967. Mineral equilibria in the system MgO-SiO2-H2O-CO2, pp. 542–67. In Abelson, P. (Ed.): Researches in Geochemistry, vol. 2. Wiley, New York.Google Scholar
Heier, K. S. 1961. Layered gabbro, hornblendite etc. on Stjernoy, North Norway. Norsk. geol. Tidsskr. 41, 109–56.Google Scholar
Heier, K. S. & Compston, W. 1969. Rb-Sr isotopic studies on Oslo rocks. Lithos 2, 133–45.CrossRefGoogle Scholar
Heinrich, E. W. 1966. The Geology of Carbonatites. Rand McNally, Chicago.Google Scholar
Heinrich, E. W. & Dahlem, D. H. 1966. Unusual characteristics of carbonatites in the Arkansas River Canyon area (abs.). Geol. Soc. Am. Program 1965 Annual Meeting, 76–7.Google Scholar
Jérémine, E. 1949. Étude pétrographique des roches éruptives et métamorphiques du massif de Bou Agrao. Notes. Serv. Geol. Maroc. 74, t. 2, 119–47.Google Scholar
King, B. C. & Sutherland, D. S. 1960. Alkaline rocks of East and South Africa. Science Progress 48, 298321, 504–24, 709–20.Google Scholar
Lippard, S. J. 1973. Petrology of phonolites from the Kenya Rift. Lithos 6, 217–34.Google Scholar
Macdonald, R. 1974. The role of fractional crystallisation in the formation of alkaline rocks, pp. 442–56. In Sorensen, H. (Ed.): The Alkaline Rocks. Wiley, New York.Google Scholar
Martin, H., Mathias, M. & Simpson, E. S. W. 1960. The Damaraland subvolcanic ring complexes in S.W. Africa. int. Geol. Cong. 21St session 13, 156–74.Google Scholar
Merrill, R. B. & Wyllie, P. J. 1975. Kaersutite and Kaersutite eclogite from Kakanui, New Zealand: Water-excess and Water-deficient melting to 30 kb. Bull. geol. Soc. Am. 86, 555–70.2.0.CO;2>CrossRefGoogle Scholar
Middlemost, E. A. K. 1974. A petrogenetic model for the origin of carbonatites. Lithos 7, 275–8.CrossRefGoogle Scholar
Mitchell, E. H. & Crocket, J. H. 1972. Isotopic composition of strontium in rocks of the Fen Alkaline Complex. J. Petrology 13, 8397.CrossRefGoogle Scholar
Nockolds, S. R. 1954. Average chemical composition of igneous rocks. Bull. geol. Soc. Am. 65, 1007–32.CrossRefGoogle Scholar
Oftedahl, C. 1960. Dyke-rocks, pp. 334–6. In Holtedahl, O. (Ed.). The Geology of Norway. Aschelong, Oslo.Google Scholar
O'Hara, M. J. & Biggar, G. M. 1969. Diopside-spinel equilibria, anorthite and forsterite reaction relations in silica-poor liquids and their bearing on the genesis of melilitites and nephelinites. Am. J. Sci. 267 A, 364–90.Google Scholar
Parker, R. L. & Sharp, W. N. 1970. Mafic-ultramafic igneous rocks and associated carbonatites of the Gem Park Complex. Prof. Pap. U.S. geol. Surv. 649.Google Scholar
Pecora, W. T. 1956. Carbonatites — a review. Bull. geol. Soc. Am. 67, 1537–56.CrossRefGoogle Scholar
Pecora, W. T. 1962. Carbonatite problem in the: Bearpaw Mountains, pp. 183–104. In: Geol. Soc. Am. Buddington Volume, Petrological Studies.Google Scholar
Philpotts, A. R. 1974. The Monteregian Province, pp. 293310. In: Sorenson, H. (Ed.): The Alkaline Rocks. Wiley, New York.Google Scholar
Powell, J. L., Hurley, P. M. & Fairbairn, H. W. 1966. Strontium isotopic composition and origin of carbonatites, pp. 365–78. In: Tuttle, O. F. & Gittins, J.(Eds): Carbonatites. Wiley, New York.Google Scholar
Ramsay, J. G. 1955. A camptonite dyke suite near Monar. Geol. Mag. 92, 297309.CrossRefGoogle Scholar
Robie, R. A. & Waldbaum, D. R. 1968. Thermodynamic properties of minerals and related substances. Bull. U.S. geol. Surv. 1259.Google Scholar
Roedder, E. 1965. Liquid CO2 inclusions in olivine nodules and phenocrysts from basalts. Am. Min. 50, 1746–82.Google Scholar
Rowe, R. B. 1958. The geology of Lonnie and Verity. Geol. Surv. Can. Econ. Geol. Ser. 18, 2935.Google Scholar
Rub, M. G. 1961. Alkalic intrusives in the Maritime Province. Isv. Akad. Nauk SSSR. 12, 5671.Google Scholar
Sabine, P. A. 1953. Minor intrusions of Assynt. Q Jl geol. Soc. Lond. 109, 137–71.CrossRefGoogle Scholar
Saggerson, E. P. & Williams, L. A. J. 1964. Ngurumanite from southern Kenya and its bearing on the origin of Tanzanian alkali rocks. J. Petrology 5, 4081.CrossRefGoogle Scholar
Schairer, J. F. & Yoder, H. S. 1968. A possible solution to the melilite-plagioclase incompatability dilemma. Geophys. Lab. Yearbook 19681969, 213–14.Google Scholar
Sheynmann, Y. M., Apel'tsin, F. E. & Nechayeva, Y. A. 1961. Alkalic intrusions, their mode of occurrence. Geologiya Mestorozhdenii Rekikh Elementov, 12– 13, 177 pp.Google Scholar
Sorensen, H. 1960. On the agpaitic rocks. Int. Geol. Cong. 21st sess. 13, 319–27.Google Scholar
Sorensen, H. 1974. The Alkaline Rocks. Wiley, New York, 622 pp.Google Scholar
Streckeisen, A. 1954. Structure and origin of the Ditro mass. Schweiz. Min. Pet. 34, 336409 and 1960: 21st Geol. Cong. 13, 228–238.Google Scholar
Tomkeieff, S. I. 1961. Alkalic ultrabasic rocks and carbonatites in the USSR. International Geol. Review 3 (9), 739–58.CrossRefGoogle Scholar
Tuttle, O. F. & Gittins, J. 1966. Carbonatites. Wiley, New York, 591 pp.Google Scholar
Upton, B. C. J. 1967. Alkaline pyroxenites, pp. 281–8. In Wylie, P. J. (Ed.): Ultramafic and related rocks. Wiley, New York.Google Scholar
Upton, B. C. J. 1974. The Gardar Province, Greenland, pp. 221–37. In Sorensen, H. (Ed.): The Alkaline Rocks. Wiley, New York.Google Scholar
Ussing, N. V. 1912. Geology of the country around Julianehaab, Greenland. Meddr GrØnland 38.Google Scholar
Van Breeman, O. & Upton, B. C. J. 1972. Age of some Gardar intrusives, S. Greenland. Bull. geol. Soc. Am. 83, 3381–90.CrossRefGoogle Scholar
Van Groos, A. F. K. 1966. The effect of NaF, NaCl and Na2CO3 on the phase relationships in selected joins of the system Na2O-CaO-Al2O3-SiO2-H2O at elevated temperatures and pressures. Private publ. Ph.D. thesis, Leiden University, Holland.Google Scholar
Verwoerd, W. J. 1966. Fenitization of basic igneous rocks, pp. 295308. In Tuttle, O. F. & Gittins, J. (Eds): Carbonatites. Wiley, New York.Google Scholar
Vincent, E. A. 1953. Lamprophyre dykes of basaltic parentage. Q. Jl Geol. Soc. Lond. 109, 2150.Google Scholar
Watkinson, D. H. & Wyllie, P. J. 1971. The system Ne-Cal-H2O and the genesis of alkali rock/carbonatite complexes. J. Petrology 12, 357–78.CrossRefGoogle Scholar
Weaver, S. D., Sceal, J. S. C. & Gibson, I. L. 1972. Trace element data relevant to the origin of trachytic and pantelleritic lavas in the E. African Rift system. Cont. Min. Pet. 36, 181–94.CrossRefGoogle Scholar
Wells, M. K., Smith, A. C. S., Bowles, T. F. W. 1974. Carbonate enrichment of a basic dyke. Min. Mag. 39, 514–24.CrossRefGoogle Scholar
Wimmenauer, W. 1966. Eruptive rocks and carbonatites of the Kaiserstuhl, Germany, pp. 183204. In Tuttle, O. F. & Gittins, J. (Eds): Carbonatites. Wiley, New York.Google Scholar
Wood, C. P. 1968. A geochemical study of E. African lavas and its relevance to the genesis of nephelinite. Ph.D. thesis, Leeds University.Google Scholar
Wright, J. B. 1971. The phonolite-trachyte spectrum. Lithos 4, 14.Google Scholar
Wyllie, P. J. 1966. Experimental data bearing on the petrological links between kimberlites and carbonatites. I.M.A. Vol. 4th general meeting, India, 6782.Google Scholar
Wyllie, P. J. 1974. Limestone assimilation, pp. 459–73. In Sorensen, H. (Ed.): The Alkaline Rocks. Wiley, New York.Google Scholar
Yoder, H. S. & Schairer, J. F. 1967. The melilite-plagioclase incompatability dilemma in igneous rocks. Geophys. Lab. Yearbook 67, 101–3.Google Scholar