Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:18:36.222Z Has data issue: false hasContentIssue false

Sr–Nd isotopic characteristics of the Late Cretaceous Shuangyashan suite: evidence for enriched mantle 2 in Northeast China

Published online by Cambridge University Press:  03 November 2011

LEI ZHANG
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P. R. China
BAO-FU HAN*
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China
JIA-FU CHEN
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China
ZHAO XU
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China
*
Author for correspondence: bfhan@pku.edu.cn

Abstract

In Northeast China, large volumes of Mesozoic–Cenozoic igneous rocks have developed as a result of long-lasting subduction of the palaeo-Pacific and Pacific plates beneath the eastern Eurasian continent. Previous studies have convincingly confirmed the presence of depleted mantle (DM), FOcal ZOne (FOZO) mantle and enriched mantle 1 (EM1) end-members; the enriched mantle 2 (EM2) end-member is probably present but it has been poorly constrained. The Late Cretaceous Shuangyashan suite, comprising a monzogabbro and diorite–porphyrite stocks and their cumulate hornblendite enclaves, from the Shuangyashan coal basin, Northeast China, is characterized by high initial 87Sr/86Sr (0.70922–0.71095) and low initial 143Nd/144Nd ratios (0.51221–0.51238) at 98 Ma. Their occurrence demonstrates that EM2 is present in the lithospheric mantle of Northeast China and its formation may be related to recycled continental material in a subduction setting.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, M. J. & Shi, Y. L. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors 159, 257–66.Google Scholar
Arndt, N. T. & Christensen, U. 1992. The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. Journal of Geophysics Research 97, 10967–81.Google Scholar
Bailey, J. C. 1996. Role of subducted sediments in the genesis of Kurile-Kamchatka island arc basalts: Sr isotopic and elemental evidence. Geochemical Journal 30, 289321.Google Scholar
Barry, T. L., Saunders, A. D. & Kempton, P. D. 2003. Petrogenesis of Cenozoic basalts from Mongolia: asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology 44, 5591.Google Scholar
Basu, A. R., Wang, J. W., Huang, W. K., Xie, G. H. & Tatsumoto, M. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters 105, 149–69.Google Scholar
Bedard, J. 2005. Partitioning coefficients between olivine and silicate melts. Lithos 83, 394419.Google Scholar
Blundy, J. & Dalton, J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contributions to Mineralogy and Petrology 139, 356–71.Google Scholar
Bouvier, A. S., Métrich, N. & Deloule, E. 2008. Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. Journal of Petrology 49, 1427–48.Google Scholar
Chen, J. C., Hsu, C. N. & Ho, K. S. 2003. Geochemistry of Cenozoic volcanic rocks and related ultramafic xenoliths from the Jilin and Heilongjiang provinces, northeast China. Journal of Asian Earth Sciences 21, 1069–84.Google Scholar
Chen, Y., Zhang, Y. X., Graham, D., Su, S. G. & Deng, J. F. 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 96, 100–26.Google Scholar
Choi, S. H., Mukasa, S. B., Kwon, S. T. & Andronikov, A. V. 2006. Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology 232, 134–51.Google Scholar
Ellam, R. M. & Cox, K. G. 1991. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth and Planetary Science Letters 105, 330–42.Google Scholar
Elliott, T. 2003. Tracers of slab. In Inside the Subduction Factory (ed. Eiler, J.), pp. 23–46. American Geophysical Union, Monograph vol. 138. Washington, DC, USA.Google Scholar
Ersoy, E. Y., Helvaci, C. & Palmer, M. R. 2010. Mantle source characteristics and melting models for the early-middle Miocene mafic volcanism in Western Anatolia: implications for enrichment processes of mantle lithosphere and origin of K-rich volcanism in post-collisional settings. Journal of Volcanology and Geothermal Research 198, 112–28.Google Scholar
Fan, Q. C., Sui, J. L. & Liu, R. X. 2001. Sr-Nd isotopic geochemistry and magmatic evolutions of Wudalianchi volcano, Tianchi volcano and Tengchong volcano. Acta Petrologica et Mineralogica 20, 233–8 (in Chinese with English abstract).Google Scholar
Foland, K. A., Gibb, F. G. F. & Henderson, C. M. B. 2000. Patterns of Nd and Sr isotopic ratios produced by magmatic and post-magmatic processes in the Shiant Isles Main Sill, Scotland. Contributions to Mineralogy and Petrology 139, 655–71.Google Scholar
Glazner, A. & Farmer, G. L. 1992. Production of isotopic variability in continental basalts by cryptic crustal contamination. Science 233, 72–4.Google Scholar
Hart, S. R., Blusztajn, J., Dick, H. J. B., Meyer, P. S. & Muehlenbachs, K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochimica et Cosmochimica Acta 63, 4059–80.Google Scholar
HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). 1993. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House, 734 pp. (in Chinese with English abstract).Google Scholar
Hergt, J. M., Chappell, B. W., McCulloch, M. T., McDougall, I. & Chivas, A. R. 1989. Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. Journal of Petrology 84, 841–83.Google Scholar
Hofmann, A. W. 1988. Chemical differentiation of the earth: the relationship between mantle continental crust and oceanic crust. Earth and Planetary Science Letters 90, 297314.Google Scholar
Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79, 3345.Google Scholar
Horikoshi, E. 1990. Opening of the Sea of Japan and Kuroko deposit formation. Mineralium Deposita 25, 140–5.Google Scholar
Hsu, C. N. & Chen, J. C. 1998. Geochemistry of late Cenozoic basalts from Wudalianchi and Jingpohu areas, Heilongjiang Province, northeast China. Journal of Asian Earth Science 16, 385405.Google Scholar
Hsu, C. N., Chen, J. C. & Ho, K. S. 2000. Geochemistry of Cenozoic volcanic rocks from Kirin Province, northeast China. Geochemical Journal 34, 3358.Google Scholar
Ikeda, Y., Nagao, K. & Kagami, H. 2001. Effects of recycled materials involved in a mantle source beneath the southwest Japan arc region: evidence from noble gas, Sr, and Nd isotopic systematics. Chemical Geology 175, 509–22.Google Scholar
Irvine, T. N. & Baragar, R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.Google Scholar
Jackson, M. G., Hart, S. R., Koppers, A. A. P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M. & Russell, J. A. 2007. The return of subducted continental crust in Samoan lavas. Nature 488, 684–7.Google Scholar
Jolivet, L., Tamaki, K. & Fournier, M. 1994. Japan Sea, opening history and mechanism: a synthesis. Journal of Geophysical Research 99, 22237–59.Google Scholar
Jones, R. H. & Layne, G. D. 1997. Minor and trace element partitioning between pyroxene and melt in rapidly cooled chondrules. American Mineralogist 82, 534–45.Google Scholar
Katzir, Y., Litvinovsky, B. A., Jahn, B. M., Eyal, M., Zanvilevich, A. N., Valley, J. W., Vapnik, Ye., Beeri, Y. & Spicuzza, M. J. 2007. Interrelations between coeval mafic and A-type silicic magmas from composite dykes in a bimodal suite of southern Israel, northernmost Arabian–Nubian Shield: geochemical and isotope constraints. Lithos 97, 336–64.Google Scholar
Kelemen, P. B., Hanghøj, K., & Greene, A. R. 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In The Crust (ed. Rudnick, R. L.), pp. 593659. Treatise on Geochemistry, vol. 3 (eds Holland, H. D. & Turekian, K. K.). Oxford: Elsevier-Pergamon.Google Scholar
Kelemen, P. B., Yogodzinski, G. M. & Scholl, D. W. 2003. Along-strike variation in the Aleutian Island Arc: Genesis of high Mg# andesite and implications for continental crust. In Inside the Subduction Factory (ed. Eiler, J.), pp. 223–76. American Geophysical Union, Monograph vol. 138. Washington, DC, USA.Google Scholar
Kumar, K. V., Reddy, M. N. & Leelannandam, C. 2006. Dynamic melting of the Precambrian mantle: evidence from rare earth elements of the amphiboles from the Nellore-Khammam Schist Belt, South India. Contributions to Mineralogy and Petrology 152, 243–56.Google Scholar
Le Roex, A. P., Bell, D. R. & Davis, P. 2003. Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. Journal of Petrology 44, 2261–86.Google Scholar
Le Roux, V., Bodinier, J. L., Tommasi, A., Alard, O., Dautria, J. M., Vauchez, A. & Riches, A. J. V. 2007. The lherz spinel lherzolite: refertilized rather than pristine mantle. Earth and Planetary Science Letters 259, 599612.Google Scholar
Li, J. Y., Niu, B. G., Song, B., Xu, W. X., Zhang, Y. H. & Zhao, Z. R. 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Beijing: Geological Publishing House, 137 pp. (in Chinese).Google Scholar
Li, J. Y., Zhang, J., Yang, T. N., Li, Y. P., Sun, G. H., Zhu, Z. X. & Wang, L. J. 2009. Crustal tectonic division and evolution of the Southern part of the North Asian Orogenic Region and its adjacent areas. Journal of Jilin University (Earth Science Edition) 39, 584605 (in Chinese with English abstract).Google Scholar
Lin, P. N. 1992. Trace element and isotopic characteristics of western Pacific pelagic sediments: implications for the petrogenesis of Mariana Arc magmas. Geochimica et Cosmochimica Acta 56, 1641–54.Google Scholar
Liu, J. Q., Han, J. T. & Fyfe, W. S. 2001. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics 339, 385401.Google Scholar
Liu, G. X., Zhang, Z. H., Han, J. T. & Tang, J. H. 2006. Features of the electric structure of the lithosphere beneath the Hinggan-Inner Mongolia and Jilin-Heilongjiang regions. Geology in China 33, 824–31 (in Chinese with English abstract).Google Scholar
Maruyama, S., Isozaki, Y., Kimura, G. & Terabayashi, M. 1997. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 6, 121–42.Google Scholar
McCulloch, M. T., Jaques, A. L., Nelson, D. R. & Lewis, J. D. 1983. Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302, 400–3.Google Scholar
McKenzie, D. P. & O'nions, R. K. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.Google Scholar
Meng, Q. L. & Zhou, Y. X. 1996. The formation and evolution of magma for J2-K1 volcanic-intrusive complex in Eastern Yanbian, Jilin Province. Acta Petrologica et Mineralogica 15, 30–9 (in Chinese with English abstract).Google Scholar
Otofuji, Y. I. & Matsuda, T. 1983. Paleomagnetic evidence for the clockwise rotation of Southwest Japan. Earth and Planetary Science Letters 62, 349–59.Google Scholar
Otofuji, Y. I. & Matsuda, T. 1984. Timing of rotational motion of Southwest Japan inferred from paleomagnetism. Earth and Planetary Science Letters 63: 373–82.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks. Journal of Petrology 25, 956–83.Google Scholar
Pearson, D. G., Canil, D. & Shirey, S. B. 2003. Mantle samples included in volcanic rocks: xenoliths and diamonds. In The mantle and Core (ed. Carlson, R. W.), pp. 171275. Treatise on Geochemistry, vol. 2 (eds Holland, H. D. & Turekian, K. K.). Oxford: Elsevier-Pergamon.Google Scholar
Pearson, D. G. & Nowell, G. M. 2002. The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Philosophical Transactions of the Royal Society of London 360, 2383–410.Google Scholar
Pearson, D. G., Shirey, S. B., Carlson, R. W., Boyd, F. R., Pokhilenko, N. P. & Shimizu, N. 1995. Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochimica et Cosmochimica Acta 59, 959–77.Google Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.Google Scholar
Prokoph, A., Shields, G. A. & Veizer, J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Science Reviews 87, 113–33.Google Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.), pp. 164. Treatise on Geochemistry, vol. 3 (eds Holland, H. D. & Turekian, K. K.). Oxford: Elsevier-Pergamon.Google Scholar
Rudnick, R. L., Gao, S., Ling, W. L., Liu, Y. S. & McDonough, M. F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77, 609–37.Google Scholar
Saal, A. E., Takazawa, E., Frey, F. A., Shimizu, N. & Hart, S. R. 2001. Re-Os isotopes in the Horoman peridotite: evidence for refertilization? Journal of Petrology 42, 2537.Google Scholar
Saunders, A. D., Norry, M. J. & Tarney, J. 1988. Origin of MORB and chemical-depleted mantle reservoirs: trace element constraints. Journal of Petrology Special Volume 1, 415–45.Google Scholar
Scambelluri, M., van Roermund, H. L. M. & Pettke, T. 2010. Mantle wedge peridotites: fossil reservoirs of deep subduction zone processes. Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos 120, 186201.Google Scholar
Senda, R., Tanaka, T. & Suzuki, K. 2007. Os, Nd, and Sr isotopic and chemical compositions of ultramafic xenoliths from Kurose, SW Japan: implications for contribution of slab-derived material to wedge mantle. Lithos 95, 229–42.Google Scholar
Shimizu, N. & Kushiro, I. 1975. The partitioning of rare earth elements between garnet and liquid at high pressures: preliminary results. Geophysical Research Letters 2, 413–6.Google Scholar
Shimizu, H., Sangen, K. & Masuda, A. 1982. Experimental-study on rare-earth element partitioning in olivine and clinopyroxene formed at 10 and 20 kb for basaltic systems. Geochemical Journal 16, 107–17.Google Scholar
Song, B., Li, J. Y., Niu, B. G. & Xu, W. X. 1997. Single grain zircon ages and its implications in biotite-plagioclase gneiss in Mashan Group in the eastern Heilongjiang. Acta Geoscientia Sinica 18, 306–12 (in Chinese with English abstract).Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taira, A. 2001. Tectonic evolution of the Japanese island arc system. Annual Review of Earth Planetary Sciences 29, 109–34.Google Scholar
Tatsumoto, M., Basu, A. R., Huang, W. K., Wang, J. W. & Xie, G. H. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters 113, 107–28.Google Scholar
Van Acken, D., Becker, H., Hammerschmidt, K., Walker, R. J. & Wombacher, F. 2010. Highly siderophile elements and Sr-Nd isotopes in refertilized mantle peridotites – a case study from the Totalp ultramafic body, Swiss Alps. Chemical Geology 276, 257–68.Google Scholar
Van Westrenen, W., Blundy, J. & Wood, B. 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. American Mineralogist 84, 838–47.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.Google Scholar
Verma, S. P. 2000. Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico. Chemical Geology 164, 3560.Google Scholar
Vroon, P. Z., Bergen, M. J. V., Klaver, G. J. & White, W. M. 1995. Strontium, neodymium, and lead isotopic and trace-element signatures of the East Indonesian sediments: provenance and implications for Banda Arc magma genesis. Geochimica et Cosmochimica Acta 59, 2573–98.Google Scholar
Wang, H. Z. & Mo, X. X. 1995. An outline of the tectonic evolution of China. Episodes 18, 616.Google Scholar
Ward, C. D., McArthur, J. M. & Walsh, J. N. 1992. Rare earth element behavior during evolution and alternation of the Dartmoor Granite, SW England. Journal of Petrology 33, 785815.Google Scholar
Weaver, B. L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–97.Google Scholar
White, W. M. 1985. Source of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–8.Google Scholar
Wilde, S. A., Zhang, X. Z. & Wu, F. Y. 2000. Extension of a newly identified 500 Ma metamorphic terrane in North East China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics 328, 115–30.Google Scholar
Willbold, M. & Stracke, A. 2010. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology 276, 188–97.Google Scholar
Wu, F. Y., Jahn, B. M., Wilde, S. & Sun, D. Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328, 89113.Google Scholar
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. Q. & Yang, J. H. 2005 a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–19.Google Scholar
Wu, F. Y., Sun, D. Y., Ge, W. C., Zhang, Y. B., Grant, M. L., Wilde, S. A. & Jahn, B. M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 130.Google Scholar
Wu, F. Y., Yang, J. H., Wilde, S. A. & Zhang, X. O. 2005 b. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology 221, 127–56.Google Scholar
Xu, Y. G., Ma, J. L., Frey, F. A., Feigenson, M. D. & Liu, J. F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Earth and Planetary Science Letters 224, 247–71.Google Scholar
Xu, Y. G., Menzies, M. A., Thirlwall, M. F., Huang, X. L., Liu, Y. & Chen, X. M. 2003. “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta 67, 487505.Google Scholar
Xu, Y. G., Menzies, M. A., Vroon, P., Mercier, J. C. & Lin, C. Y. 1998. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology 39, 469–93.Google Scholar
Xu, W. L., Pei, F. P., Gao, F. H., Yang, D. B. & Bu, Y. J. 2008. Zircon U-Pb age from basement granites in Yishu Graben and its tectonic implications. Earth Science – Journal of China University of Geosciences 33, 145–50 (in Chinese with English abstract).Google Scholar
Zhang, Z. C., Feng, C. Y., Li, Z. N., Li, S. C., Xin, Y., Li, Z. M. & Wang, X. Z. 2002. Petrochemical study of the Jingpohu Holocene alkali basaltic rocks, northeastern China. Geochemical Journal 36, 133–53.Google Scholar
Zhang, H. F., Goldstein, S. L., Zhou, X. H., Sun, M., Zheng, J. P. & Cai, Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology 155, 271–93.Google Scholar
Zhang, L., Han, B. F., Wei, C. J. & Shu, G. M. 2011. Cumulate hornblendite enclaves in diorite–porphyrite intrusions from the Shuangyashan, Northeast China, and implications for the transition from lower crust to upper mantle in subduction setting. International Journal of Earth Sciences 100, 6379.Google Scholar
Zhang, L., Han, B. F., Zhu, Y. F., Xu, Z., Chen, J. F. & Song, B. 2009. Geochronology, mineralogy, crystallization process and tectonic implications of the Shuangyashan monzogabbro in eastern Heilongjiang Province. Acta Petrologica Sinica 25, 577–87 (in Chinese with English abstract).Google Scholar
Zhang, M., Menzies, M. A., Suddaby, P. & Thirlwall, M. F. 1991. EM1 signature from within the post-Archaean subcontinental lithospheric mantle: isotopic evidence from the potassic volcanic rocks in NE China. Geochemical Journal 25, 387–98.Google Scholar
Zhang, M., Suddaby, P., Thompson, R. N., Thirlwall, M. F. & Menzies, M. A. 1995. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. Journal of Petrology 36, 1275–303.Google Scholar
Zhang, Y. B., Wu, F. Y., Wilde, S. A., Zhai, M. G., Lu, X. P. & Sun, D. Y. 2004. Zircon U-Pb ages and tectonic implications of ‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China. Island Arc 13, 484505.Google Scholar
Zhang, X. J., Yang, B. J., Wu, F. Y. & Liu, G. X. 2006. The lithosphere structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) region, northeast China. Geology in China 33, 816–23 (in Chinese with English abstract).Google Scholar
Zhao, C. J., Peng, Y. J., Dang, Z. X. & Zhang, Y. P. 1996. Tectonic Framework and Crust Evolution of Eastern Jilin and Heilongjiang Provinces. Shenyang: Liaoning University Press, 124 pp. (in Chinese).Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.Google Scholar
Zou, H. B., Reid, M. R., Liu, Y. S., Yao, Y. P., Xu, X. S. & Fan, Q. C. 2003. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology 200, 189201.Google Scholar