Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T06:09:25.107Z Has data issue: false hasContentIssue false

U–Pb geochronology of bentonites from the Upper Cretaceous Kanguk Formation, Sverdrup Basin, Arctic Canada: constraints on sedimentation rates, biostratigraphic correlations and the late magmatic history of the High Arctic Large Igneous Province

Published online by Cambridge University Press:  24 June 2016

WILLIAM J. DAVIS*
Affiliation:
Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
CLAUDIA J. SCHRÖDER-ADAMS
Affiliation:
Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada
JENNIFER M. GALLOWAY
Affiliation:
Geological Survey of Canada, 3303 33 St. N.W., Calgary, Alberta T2L 2A7, Canada
JENS O. HERRLE
Affiliation:
Biodiversity and Climate Research Centre (BIK-F), Institute of Geosciences, Goethe University Frankfurt, D-60438 Frankfurt am Main, Germany
ADAM T. PUGH
Affiliation:
Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada
*
Author for correspondence: bill.davis@canada.ca

Abstract

U–Pb ages of zircon from bentonites within the upper Cretaceous Bastion Ridge and Kanguk formations, Sverdrup Basin, provide constraints on sedimentation rates, biostratigraphic correlations, timing of Oceanic Anoxic Event 2 (OAE2) in the High Arctic, and the late magmatic history of the High Arctic Large Igneous Province (HALIP). A late Cenomanian to early Turonian age for the base of the Kanguk Formation is confirmed that supports correlations of the global OAE2 in the High Arctic. Sedimentation rates varied from 19 m Ma−1 between 93 and 91 Ma to 26 m Ma−1 between 91 and 83 Ma at Axel Heiberg Island. At Ellef Ringnes Island, the lower Kanguk Formation records high rates of ~70 m Ma−1 between 94 and 93 Ma, which decrease to rates comparable to those of the upper Axel Heiberg section. Differences in sedimentation rates may reflect differences in setting prior to the major transgression in the latest Cenomanian to early Turonian. The timing of Arctic occurrences of the Scaphites nigricollensis and Scaphites depressus ammonite zones is shown to be broadly comparable to that of lower-latitude occurrences within the Western Interior Seaway. An eruption frequency of 0.5–2.5 Ma characterizes the late alkaline phase of HALIP magmatism. Volcanic bed thicknesses of 10–50 cm suggest ash transport distances of less than 1000 km. Long-lived volcanic centres, in the area of the Alpha Ridge, northern Ellesmere Island or northern Greenland, were the likely source of volcanic ash over a period of 10–15 Ma.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: ConocoPhillips Canada, 2100, Bow Valley Square Four, 250 6th Avenue S.W., Calgary, Alberta T2P 3H7, Canada

References

Bachmann, O., Oberli, F., Dungan, M. A., Meier, M., Mundil, R. & Fischer, H. 2007. 40Ar/39Ar and U–Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: evidence for an extended crystallization history. Chemical Geology 236, 134–66.CrossRefGoogle Scholar
Balkwill, H. R. 1978. Evolution of Sverdrup Basin, Arctic Canada. American Association of Petroleum Geologists Bulletin 62, 1004–28.Google Scholar
Balkwill, H. R. 1983. Geology of Amund Ringnes, Cornwall, and Haig-Thomas Islands, District of Franklin. Geological Survey of Canada, Memoir 390.Google Scholar
Balkwill, H. R. & Hopkins, W. S. J. 1976. Cretaceous stratigraphy, Hoodoo Dome, Ellef Ringnes Island, District of Franklin. In Geological Survey of Canada Paper 76-1B, 329–33.Google Scholar
Barboni, M., Schoene, B., Ovtcharova, M., Schaltegger, U., Bussy, F. & Gerdes, A. 2013. Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. Chemical Geology 342, 7693, doi: 10.1016/j.chemgeo.2012.12.011.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., & Foudoulis, C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology 205, 115–40.Google Scholar
Bono, R., Tarduno, J. A. & Singer, B. S. 2013. Cretaceous magmatism in the High Canadian Arctic: implications for the nature and age of Alpha Ridge. EGU General Assembly Conference Abstracts, EGU2013–11429.Google Scholar
Buchan, K. L. & Ernst, R. 2006. Giant dyke swarms and the reconstruction of the Canadian Arctic Islands, Greenland, Svalbard and Franz Josef Land. In Dyke Swarms – Time Markers of Crustal Evolution – Proceedings of the 5th International Conference, IDC-5 (eds Hanski, E., Metanen, S., Rämo, T. & Vuollo, J.), pp. 2748. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Corfu, F., Polteau, S., Planke, S., Faleide, J. I., Svensen, H., Zayoncheck, A. & Stolbov, N. 2013. U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province. Geological Magazine 150, 1127–35.Google Scholar
Døssing, A., Jackson, H. R., Matzka, J., Einarsson, I., Rasmussen, T. M., Olesen, A. V. & Brozena, J. M. 2013. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province – results of new aeromagnetic data. Earth and Planetary Science Letters 363, 219–30, doi: 10.1016/j.epsl.2012.12.013.CrossRefGoogle Scholar
Drachev, S. & Saunders, A. 2006. The early Cretaceous Arctic LIP: its geodynamic setting and implications for Canada Basin opening. In Proceedings of the Fourth International Conference on Arctic Margins (eds Scott, R. & Thurston, D. K.), pp. 216–23. US Department of the Interior, MMS 2006-03, Anchorage, Alaska.Google Scholar
Embry, A. F. 1992. Crockerland; the northwest source area for the Sverdrup Basin, Canadian Arctic Islands. In Arctic Geology and Petroleum Potential (eds Vorren, T., Blackadar, R., Glenister, B., Greiner, H., McLaren, D., McMillan, N., Norris, A., Roots, E., Souther, J., Thorsteinsson, R. and Tozer, T.) pp. 205–16. Norwegian Petroleum Society, Special Publication no. 2.Google Scholar
Embry, A. 2009. Crockerland – the source area for the Triassic to Middle Jurassic strata of Northern Axel Heiberg Island, Canadian Arctic Islands. Bulletin of Canadian Petroleum Geology 57, 129–40.Google Scholar
Embry, A. & Beauchamp, B. 2008. Sverdrup Basin. In Sedimentary Basins of the World (ed. Miall, A. D.), Vol. 5, pp. 451–71. Amsterdam: Elsevier.Google Scholar
Embry, A. F. & Dixon, J. 1990. The breakup unconformity of the Amerasia Basin, Arctic Ocean: evidence from Arctic Canada. Geological Society of America Bulletin 102, 1526–34.Google Scholar
Embry, A. F. & Osadetz, K. G. 1988. Stratigraphy and tectonic significance of Cretaceous volcanism in the Queen Elizabeth Islands, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences 25, 1209–19.Google Scholar
Estrada, S. & Henjes-Kunst, F. 2004. Volcanism in the Canadian High Arctic related to the opening of the Arctic Ocean. Zeitschrift der Deutschen Geologischen Gesellschaft 154, 579603.CrossRefGoogle Scholar
Estrada, S. & Henjes-Kunst, F. 2013. 40Ar/39Ar and U–Pb dating of Cretaceous continental rift-related magmatism on the northeast Canadian Arctic margin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 164, 107–30.Google Scholar
Estrada, S., Piepjohn, K., Henjes-Kunst, F. & von Gosen, W. 2003. Geology, magmatism and structural evolution of the Yelverton Bay area, northern Ellesmere Island, Arctic Canada. Polarforschung 73, 5975.Google Scholar
Evenchick, C. A., Davis, W. J., Bedard, J. H., Hayward, N. & Friedman, R. M. 2015. Evidence for protracted high Arctic large igneous province magmatism in the central Sverdrup Basin from stratigraphy, geochronology, and paleodepths of saucer-shaped sills. Geological Society of America Bulletin 127, 1366–90, doi: 10.1130/B31190.1.Google Scholar
Evenchick, C. A. & Embry, A. F. 2012. Geology, Ellef Ringnes Island North, Nunavut. Geological Survey of Canada, Canadian Geoscience Map 86, 1:125,000, 1 sheet.CrossRefGoogle Scholar
Folkes, C. B., de Silva, S. L., Schmitt, A. K. & Cas, R. A. F. 2011. A reconnaissance of U–Pb zircon ages in the Cerro Galán system, NW Argentina: prolonged magma residence, crystal recycling, and crustal assimilation. Journal of Volcanology and Geothermal Research 206, 136–47.Google Scholar
Gaina, C., Medvedev, S., Torsvik, T. H., Koulakov, I. & Werner, S. C. 2013. 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surveys in Geophysics 35, 1095–122.Google Scholar
Galloway, J. M., Sweet, A. R., Pugh, A., Schröder-Adams, C. J., Swindles, G. T., Haggart, J. W. & Embry, A. F. 2012. Correlating middle Cretaceous palynological records from the Canadian High Arctic based on a section from the Sverdrup Basin and samples from the Eclipse Trough. Palynology 36, 277302.Google Scholar
Galloway, J. M., Sweet, A. R., Swindles, G. T., Dewing, K., Hadlari, T., Embry, A. F. & Sanei, H. 2013. Middle Jurassic to Lower Cretaceous paleoclimate of Sverdrup Basin, Canadian Arctic Archipelago inferred from the palynostratigraphy. Marine and Petroleum Geology 44, 240–55.Google Scholar
Galloway, J. M., Tullius, D. N., Evenchick, C. A., Swindles, G. T., Hadlari, T. & Embry, A. 2015. Early Cretaceous vegetation and climate at high latitude: palynological evidence from Isachsen Formation, Arctic Canada. Cretaceous Research 56, 399420.Google Scholar
Gradstein, F. M. & Ogg, J. G. 2012. The chronostratigraphic scale. In The Geologic Time Scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 3142. Boston: Elsevier.CrossRefGoogle Scholar
Grantz, A., Hart, E. & Childers, V. A. 2011. Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. In Arctic Petroleum Geology (eds Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V. & Sorensen, K.), pp. 771–99. Geological Society of London Memoir 35.Google Scholar
Greiner, H. R. 1963. Malloch dome and vicinity, Ellef Ringnes Island. In Geology of the Northcentral Part of the Arctic Archipelago, Northwest Territories. pp. 563–71. Geological Survey of Canada Memoir 320.Google Scholar
Hall, R. L., MacRae, A. & Hills, L. V. 2005. Middle Albian (Lower Cretaceous) gastroplitinid ammonites and dinoflagellates from the Christopher Formation (Dragon Mountain, Axel Heiberg Island, Canadian Arctic Islands) and revision of the genus Pseudogastroplites Jeletzky, 1980. Journal of Paleontology 79, 219–41.Google Scholar
Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M. & Fath, J. 2015. Mid-Cretaceous High Arctic stratigraphy, climate, and Oceanic Anoxic Events. Geology 43, 403–6, doi: 10.1130/G36439.1.Google Scholar
Hills, L. V., Braunberger, W. F., Núñez-Betelu, L. K. & Hall, R. L. 1994. Paleogeographic significance of Scaphites depressus in the Kanguk Formation (Upper Cretaceous), Axel Heiberg Island, Canadian Arctic. Canadian Journal of Earth Sciences 31, 733–6.Google Scholar
Hills, L. V. & Strong, W. L. 2007. Multivariate analysis of Late Cretaceous Kanguk Formation (Arctic Canada) palynomorph assemblages to identify nearshore to distal marine groupings. Bulletin of Canadian Petroleum Geology 55, 160–72.Google Scholar
Ioannides, N. S. 1986. Dinoflagellate cysts from Upper Cretaceous – Lower Tertiary sections, Bylot and Devon Islands, Arctic Archipelago. Geological Survey of Canada Bulletin 371, 199.Google Scholar
Jeletzky, J. A. 1970. Cretaceous paleogeography of Arctic Canada. American Association of Petroleum Geologists Bulletin 54, 2488–97.Google Scholar
Jowitt, S. M., Williamson, M. & Ernst, R. E. 2014. Geochemistry of the 130 to 80 Ma Canadian High Arctic large igneous province (HALIP) event and the implications for Ni–Cu–PGE prospectivity. Economic Geology and the Bulletin of the Society of Economic Geologists 109, 281307, doi: 10.2113/econgeo.109.2.281.Google Scholar
Kontak, D. J., Jensen, S. M., Dostal, J., Archibald, D. A. & Kyser, T. K. 2001. Cretaceous mafic dyke swarm, Peary Land, Northernmost Greenland: geochronology and petrology. Canadian Mineralogist 39, 9971020.Google Scholar
Lenniger, M., Nøhr-Hansen, H., Hills, L. V. & Bjerrum, C. J. 2014. Arctic black shale formation during Cretaceous Oceanic Anoxic event 2. Geology 42, 799802.CrossRefGoogle Scholar
Ludwig, K. R. 2003. Using Isoplot/Ex, Version 3, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 4.Google Scholar
Ma, C., Meyers, S. R., Sageman, B. B., Singer, B. S. & Jicha, B. R. 2014. Testing the astronomical time scale for oceanic anoxic event 2, and its extension into Cenomanian strata of the Western Interior Basin (USA). Bulletin of the Geological Society of America 126, 974–89.CrossRefGoogle Scholar
Maher, H. D. Jr. 2001. Manifestations of Cretaceous High Arctic large igneous province in Svalbard. Journal of Geology 109, 91104.Google Scholar
Mastin, L. G., Van Eaton, A. R. & Lowenstern, J. B. 2014. Modeling ash fall distribution from a Yellowstone supereruption. Geochemistry, Geophysics, Geosystems 15, 3459–75.Google Scholar
Mattinson, J. M. 2005. Zircon U–Pb chemical abrasion (‘CA-TIMS’) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.Google Scholar
Meyers, S. R., Siewert, S. E., Singer, B. S., Sageman, B. B., Condon, D. J., Obradovich, J. D., Jicha, B. R. & Sawyer, D. A. 2012. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian–Turonian boundary interval, western interior Basin, USA. Geology 40, 710.CrossRefGoogle Scholar
Miall, A. D. 1979. Mesozoic and Tertiary Geology of Banks Island, Arctic Canada: The History of an Unstable Craton Margin. Geological Survey of Canada Memoir, Map 1455a on 4 sheets.Google Scholar
Mickey, M. B., Byrnes, A. & Haga, H. 2002. Biostratigraphic evidence for the prerift position of the North Slope, Alaska, and Arctic Islands, Canada, and Sinemurian incipient rifting of the Canada Basin. In Geological Society of America Special Paper 360, 6775.Google Scholar
Núñez-Betelu, L. 1994. Sequence stratigraphy of a coastal to offshore transition, Upper Cretaceous Kanguk Formation; a palynological, sedimentological, and Rock-Eval characterization of a depositional sequence, northeastern Sverdrup Basin, Canadian Arctic. Ph.D. thesis, University of Calgary, Canada. Published thesis.Google Scholar
Núñez-Betelu, L. & Hills, L. V. 1994. Palynological data from the uppermost Hassel and Kanguk formations and the lowermost Eureka Sound Group (uppermost Lower Cretaceous-Paleocene), Axel Heiberg and Ellesmere islands, Canadian Arctic. Geological Survey of Canada Open File Report 2489.Google Scholar
Núñez-Betelu, L. K., MacRae, R. A., Hills, L. V. & Muecke, G. K. 1994. Uppermost Albian-Campanian palynological biostratigraphy of Axel Heiberg and Ellesmere islands (Canadian Arctic). In Proceedings of the 1992 International Conference on Arctic Margins, Anchorage, AK (eds Thurston, D. K. & Fujita, K.), pp. 135–40. US Department of the Interior.Google Scholar
Ogg, J. G., Hinnov, L. A. & Huang, C. 2012. Cretaceous. In The Geologic Time Scale (eds Gradstein, F. M., Schmitz, J. G. O. D. and Ogg, G. M.), pp. 793853. Boston: Elsevier.CrossRefGoogle Scholar
Olfer'ev, A. G., Beniamovski, V. N., Vishnevskaya, V. S., Ivanov, A. V., Kopaevich, L. F., Ovechkina, M. N., Pervushov, E. M., Sel'tser, V. B., Tesakova, E. M., Kharitonov, V. M. & Shcherbinina, E. A. 2008. Upper Cretaceous deposits in the Northwest of Saratov region, Part 2: Problems of chronostratigraphy and regional geological history. Stratigraphy and Geological Correlation 16 (3), 267–94.Google Scholar
Parrish, R. R., Roddick, J. C., Loveridge, W. D. & Sullivan, R. W. 1987. Uranium – lead analytical techniques at the Geochronology Laboratory, Geological Survey of Canada. In Geological Survey of Canada Paper 87-02, 3–7.Google Scholar
Parsons, M. B. 1994. Geochemistry and petrogenesis of Late Cretaceous bentonites from the Kanguk Formation, Axel Heiberg and Ellesmere islands, Canadian High Arctic. B.Sc. . thesis, Dalhousie University, Canada. Published thesis.Google Scholar
Pugh, A. T., Schröder-Adams, C. J., Carter, E. S., Herrle, J. O., Galloway, J., Haggart, J. W., Andrews, J. L. & Hatsukano, K. 2014. Cenomanian to Santonian radiolarian biostratigraphy, carbon isotope stratigraphy and paleoenvironments of the Sverdrup Basin, Ellef Ringnes Island, Nunavut, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 413, 101–22.Google Scholar
Ricketts, B., Osadetz, K. & Embry, A. 1985. Volcanic style in the Strand Fiord Formation (Upper Cretaceous), Axel Heiberg Island, Canadian Arctic Archipelago. Polar Research 3, 107–22.Google Scholar
Roddick, J. C. 1987. Generalized numerical error analysis with applications to geochronology and thermodynamics. Geochimica et Cosmochimica Acta 51, 2129–35.Google Scholar
Sageman, B. B., Singer, B. S., Meyers, S. R., Siewert, S. E., Walaszczyk, I., Condon, D. J., Jicha, B. R., Obradovich, J. D. & Sawyer, D. A. 2014. Integrating 40Ar/39Ar, U–Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA. Bulletin of the Geological Society of America 126, 956–73.Google Scholar
Sahagian, D. L., Beisel, A. L. & Zakharov, V. A. 1994. Sequence stratigraphy enhancement of biostratigraphic correlation with application to the upper Cretaceous of Northern Siberia: a potential tool for petroleum exploration. International Geology Review 36, 359–72.Google Scholar
Schärer, U. 1984. The effect of initial 230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters 67, 191204.Google Scholar
Schröder-Adams, C. J., Herrle, J. O., Embry, A. F., Haggart, J. W., Galloway, J. M., Pugh, A. T. & Harwood, D. M. 2014. Aptian to Santonian foraminiferal biostratigraphy and paleoenvironmental change in the Sverdrup Basin as revealed at Glacier Fiord, Axel Heiberg Island, Canadian Arctic Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology 413, 81100.Google Scholar
Tapia, M. & Harwood, D. M. 2002. Upper Cretaceous diatom biostratigraphy of the arctic archipelago and northern continental margin, Canada. Micropaleontology 48, 303–42.Google Scholar
Tappan, H. 1962. Foraminifera from the Arctic Slope of Alaska. Part 3, Cretaceous foraminifera. In US Geological Survey Professional Paper 236-C, pp. 91–209, plates, pp. 229–58.Google Scholar
Tarduno, J. A., Brinkman, D. B., Renne, R., Cottrell, R. D., Scher, H. & Castillo, P. 1998. Evidence for extreme climatic warmth from Late Cretaceous arctic vertebrates. Science 282, 2241–4.Google Scholar
Tegner, C., Storey, M., Holm, M., Thorarinsson, S. B., Zhao, X., Lo, C.-. & Knudsen, M. F. 2011. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar–39Ar age of Kap Washington Group volcanics, North Greenland. Earth and Planetary Science Letters 303, 203–14.Google Scholar
Thorarinsson, S. B., Holm, M., Duprat, H. & Tegner, C. 2011. Silicic magmatism associated with Late Cretaceous rifting in the Arctic Basin – petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland. Lithos 125, 6585.Google Scholar
Thorarinsson, S. B., Holm, M., Duprat, H. I. & Tegner, C. 2012. Petrology and Sr–Nd–Pb isotope geochemistry of Late Cretaceous continental rift ignimbrites, Kap Washington peninsula, North Greenland. Journal of Volcanology and Geothermal Research 219–220, 6386.Google Scholar
Thorarinsson, S. B., Holm, M., Tappe, S., Heaman, L. M. & Tegner, C. 2011. Late Cretaceous – Palaeocene continental rifting in the High arctic: U–Pb geochronology of the Kap Washington Group volcanic sequence, North Greenland. Journal of the Geological Society 168, 1093–106.Google Scholar
Thorsteinsson, R. & Tozer, E. T. 1970. Geology of the Arctic Archipelago. In Geology and Economic Minerals of Canada (ed. Douglas, R. J. W.), pp. 547–90. Geological Survey of Canada, Economic Geology Report No. 1.Google Scholar
Trettin, H. 1989. The Arctic Islands. In The Geology of North America – An Overview (eds Bally, A. W. & Palmer, A. R.), pp. 349–70. Boulder, CO: Geological Society of America.Google Scholar
Trettin, H. & Parrish, R. 1987. Late Cretaceous bimodal magmatism, northern Ellesmere Island: isotopic age and origin. Canadian Journal of Earth Sciences 24, 257–65.Google Scholar
Verzhbitskii, E. V., Lobkovskii, L. I., Byakov, A. F. & Kononov, M. V. 2013. The origin and age of the Alpha-Mendeleev and Lomonosov ridges in the Amerasia Basin. Oceanology 53, 8998.CrossRefGoogle Scholar
Villeneuve, M. & Williamson, M. 2006. 40Ar/39Ar dating of mafic magmatism from the Sverdrup Basin Magmatic Province. In Proceedings of the Fourth International Conference on Arctic Margins, Anchorage, AK (eds. Scott, R. & Thurston, D. K.), Canada, pp. 206–15. US Department of the Interior, MMS 2006-03.Google Scholar
Wall, J. H. 1983. Jurassic and Cretaceous foraminiferal biostratigraphy in the eastern Sverdrup Basin, Canadian Arctic archipelago (Axel Heiberg Island, Ellesmere Island). Bulletin of Canadian Petroleum Geology 31, 246–81.Google Scholar
Wilson, M. V. H. 1978. Upper Cretaceous marine Teleostei from the basal Kanguk Formation, Banks Island, Northwest Territories. Canadian Journal of Earth Sciences 15, 17991807.Google Scholar