Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:13:45.015Z Has data issue: false hasContentIssue false

The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora

Published online by Cambridge University Press:  09 January 2008

C. A. LANDIS
Affiliation:
Department of Geology, University of Otago, P.O. Box 56, Dunedin, New Zealand
H. J. CAMPBELL*
Affiliation:
GNS Science, P.O. Box 30-368, Lower Hutt, New Zealand
J. G. BEGG
Affiliation:
GNS Science, P.O. Box 30-368, Lower Hutt, New Zealand
D. C. MILDENHALL
Affiliation:
GNS Science, P.O. Box 30-368, Lower Hutt, New Zealand
A. M. PATERSON
Affiliation:
Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand
S. A. TREWICK
Affiliation:
Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Private Bag 11-222, Palmerston North, New Zealand
*
Author for correspondence: h.campbell@gns.cri.nz

Abstract

The Waipounamu Erosion Surface is a time-transgressive, nearly planar, wave-cut surface. It is not a peneplain. Formation of the Waipounamu Erosion Surface began in Late Cretaceous time following break-up of Gondwanaland, and continued until earliest Miocene time, during a 60 million year period of widespread tectonic quiescence, thermal subsidence and marine transgression. Sedimentary facies and geomorphological evidence suggest that the erosion surface may have eventually covered the New Zealand subcontinent (Zealandia). We can find no geological evidence to indicate that land areas were continuously present throughout the middle Cenozoic. Important implications of this conclusion are: (1) the New Zealand subcontinent was largely, or entirely, submerged and (2) New Zealand's present terrestrial fauna and flora evolved largely from fortuitous arrivals during the past 22 million years. Thus the modern terrestrial biota may not be descended from archaic ancestors residing on Zealandia when it broke away from Gondwanaland in the Cretaceous, since the terrestrial biota would have been extinguished if this landmass was submerged in Oligocene–Early Miocene time. We conclude that there is insufficient geological basis for assuming that land was continuously present in the New Zealand region through Oligocene to Early Miocene time, and we therefore contemplate the alternative possibility, complete submergence of Zealandia.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J. C., Clark, G. L., Meffre, S. & Cluzel, D. 1995. Eocene arc–continent collision in New Caledonia and implications for regional southwest Pacific tectonics evolution. Geology 23, 161–4.2.3.CO;2>CrossRefGoogle Scholar
Andrew, E. C. 1906. The New Zealand sound and lake basins, and the canyons of eastern Australia in their bearing on the theory of the peneplain. Proceedings of the Linnean Society of New South Wales 311, 499516.Google Scholar
Beggs, J. M. 1978. Geology of the metamorphic basement and Late Cretaceous to Oligocene sedimentary sequence of Campbell Island, southwest Pacific Ocean. Journal of the Royal Society of New Zealand 8, 161–77.CrossRefGoogle Scholar
Bellamy, D., Spingett, B. & Hayden, P. 1990. Moa's Ark: the voyage of New Zealand. New York: Viking, 231 pp.Google Scholar
Bennett, E., Youngson, J., Jackson, J., Norris, R., Raisbeck, G. & Yiou, F. 2006. Combining geomorphic observations with in situ cosmogenic isotope measurements to study anticline growth and fault propagation in Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics 49, 217–31.CrossRefGoogle Scholar
Benson, W. N. 1935. Some landforms in southern New Zealand. The Australian Geographer 2, 323.CrossRefGoogle Scholar
Benson, W. N. 1940. Landslides and allied features in the Dunedin district in relation to geological structure, topography and engineering. Transactions and Proceedings of the Royal Society of New Zealand 70, 249–63.Google Scholar
Benson, W. N. 1942. The basic igneous rocks of eastern Otago and their tectonic environment. Part II. Transactions of the Royal Society of New Zealand 72, 85118.Google Scholar
Bishop, D. G. 1968. S2 Kahurangi (1st edition). Geological Map of New Zealand 1:63,630. Department of Scientific and Industrial Research, Wellington.Google Scholar
Bishop, D. G. 1994. Extent and regional deformation of the Otago peneplain. Institute of Geological and Nuclear Sciences Science Report no. 94/1, 10 pp.Google Scholar
Boggs, S. J. R. 1987. Principles of Sedimentology and Stratigraphy. Columbus: Merrill, 784 pp.Google Scholar
Brown, B., Emberson, R. M. & Paterson, A. M. 1999. Phylogeny of ‘Oxycanus’ lineages of hepialid moths from New Zealand inferred from sequence variation in the mtDNA COI and COII gene regions. Molecular Phylogenetics and Evolution 13, 463–73.CrossRefGoogle Scholar
Campbell, H. J., Andrews, P. B., Beu, A. G., Maxwell, P. A., Edwards, A. R., Laird, M. G., Hornibrook, N. De B., Mildenhall, D. C., Watters, W. A., Buckeridge, J. S., Lee, D. E., Strong, C. P., Wilson, G. J. & Hayward, B. W. 1994. Cretaceous–Cenozoic geology and biostratigraphy of the Chatham Islands. Institute of Geological & Nuclear Sciences Monograph no. 2, 269 pp.Google Scholar
Campbell, H. J., Begg, J. G., Beu, A. G., Carter, R. M., Davies, G., Holt, K., Landis, C. A. & Wallace, C. 2006. On the turn of a scallop. (Abstract). Geology and Genes III. Geological Society Miscellaneous Publication 121, 9.Google Scholar
Campbell, H. J. & Landis, C. A. 2001. New Zealand awash. New Zealand Geographic 51, 67.Google Scholar
Carter, R. M. 1985. The mid-Oligocene Marshall Paraconformity, New Zealand: coincident with global eustatic sea-level fall or rise? Journal of Geology 93, 359–71.CrossRefGoogle Scholar
Carter, R. M. 1988. Post break-up stratigraphy of the Kaikoura Synthem (Cretaceous Cenozoic), continental margin, southeastern New Zealand. New Zealand Journal of Geology and Geophysics 31, 405–29.CrossRefGoogle Scholar
Carter, R. M. 2003. The Marshall Paraconformity: Marker for the inception of the global thermo-haline circulation. Geological Society of New Zealand Miscellaneous Publication 116A, 30.Google Scholar
Carter, R. M. & Landis, C. A. 1972. Correlative Oligocene unconformities in southern Australasia. Nature Physical Science 237, 12–3.CrossRefGoogle Scholar
Carter, R. M., Lindqvist, J. K. & Norris, R. J. 1982. Oligocene unconformities and nodular phosphate – hardground horizons in western Southland and northern West Coast. Journal of the Royal Society of New Zealand 12, 1146.CrossRefGoogle Scholar
Censky, E. J., Hodge, K. & Dudley, J. 1998. Over-water dispersal of lizards due to hurricanes. Nature 395, 558.CrossRefGoogle Scholar
Cook, L. G., & Crisp, M. D. 2005. Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeography. Journal of Biogeography 32, 741–54.CrossRefGoogle Scholar
Coombs, D. S., White, A. J. R. & Hamilton, D. 1960. Age relations of the Dunedin Volcanic Complex and some palaeogeographic implications – Part 1. New Zealand Journal of Geology and Geophysics 3, 325–36.CrossRefGoogle Scholar
Cooper, A. & Cooper, R. A. 1995. The Oligocene bottleneck and New Zealand biota: generic record of a past environmental crisis. Proceedings of the Royal Society of London, Series B 261, 293302.Google Scholar
Cooper, A., Mourer-Chauvire, C., Chambers, G. K., Haeseler, A. Von, Wilson, A. C. & Paabo, S. 1992. Independent origins of New Zealand moas and kiwis. Proceedings of the National Academy of Sciences, USA 89, 8741–4.CrossRefGoogle ScholarPubMed
Cooper, R. A. (ed.) 2004. The New Zealand geological timescale. Institute of Geological and Nuclear Sciences Monograph no. 22, 284 pp.Google Scholar
Cooper, R. A. & Millener, P. R. 1993. The New Zealand biota: historical background and new research. Trends in Evolutionary Biology 8, 429–33.CrossRefGoogle ScholarPubMed
Cotton, C. A. 1916. Block Mountains and a “fossil” denudation plain in northern Nelson. Transactions New Zealand Institute 48, 5975.Google Scholar
Cotton, C. A. 1938. Some peneplains in Otago, Canterbury, and the North Island of New Zealand. New Zealand Journal of Science and Technology B 20, 18.Google Scholar
Cotton, C. A. 1949. Geomorphology. Christchurch, New Zealand: Whitcomb and Tombs, 505 pp.Google Scholar
Couper, R. A. 1960. New Zealand Mesozoic and Cainozoic plant microfossils. New Zealand Geological Survey Paleontological Bulletin no. 32, 87 pp.Google Scholar
Craddock, E. M. 2000. Speciation processes in the adaptive radiation of Hawaiian plants and animals. Evolutionary Biology 31, 153.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A. & Marshall, B. A. 2006. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand Eocene to Recent shelf molluscs. Palaios 21, 86105.CrossRefGoogle Scholar
Crampton, J. S., Schiøler, P. & Roncaglia, L. 2006. Detection of Late Cretaceous eustatic signatures using quantitative stratigraphy. Geological Society of America Bulletin 118, 975–90.CrossRefGoogle Scholar
Craw, D. 1994. Contrasting alteration mineralogy at an unconformity beneath auriferous terrestrial sediments, central Otago, New Zealand. Sedimentary Geology 92, 1730.CrossRefGoogle Scholar
Daniel, I. L. 2004. Plants “think”. Canterbury Botanical Society Journal 38, 4650.Google Scholar
Davis, W. M. 1889 a. The rivers and valleys of Pennsylvania. National Geographical Society Monograph 1, 269304.Google Scholar
Davis, W. M. 1889 b. Topographic development of the Triassic formations of the Connecticut Valley. American Journal of Science 37, 423–34.CrossRefGoogle Scholar
Davis, W. M. 1899. The geographic cycle. Geographical Journal 14, 481504.CrossRefGoogle Scholar
De Queiroz, A. 2005. The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution 20, 6873.CrossRefGoogle ScholarPubMed
Dix, G. R. & Nelson, C. S. 2004. Provenance and geochemistry of exotic clasts in conglomerates of the Oligocene Torehina Formation, Coromandel Peninsula, New Zealand. New Zealand Journal of Geology and Geophysics 46, 539–52.CrossRefGoogle Scholar
Douglas, B. J. 1986. Lignite resources of Central Otago. New Zealand Energy Research and Development Committee Report, 104 pp.Google Scholar
Edbrooke, S. W., Sykes, R. & Pocknall, D. T. 1994. Geology of the Waikato Coal Measure, Waikato coal region, New Zealand. Institute of Geological and Nuclear Sciences Monograph no. 6, 236 pp.Google Scholar
Field, B. D. & Browne, G. H. 1989. Cretaceous and Cenozoic sedimentary and geological evolution of the Canterbury Basin, South Island, New Zealand. New Zealand Geological Survey Basin Studies no. 2, 55 pp.Google Scholar
Flannery, T. F. 1994. The Future Eaters, an ecological history of the Australasian lands and people. Sydney: Reed New Holland, 423 pp.Google Scholar
Flemal, R. C. 1971. The attack on the Davisian System of geomorphology: a synopsis. Journal of Geological Education 19, 313.CrossRefGoogle Scholar
Fleming, C. A. 1962. New Zealand Biogeography. A palaeontologist's approach. Tuatara 10, 53108.Google Scholar
Fleming, C. A. 1975. The geological history of New Zealand and its biota. In Biogeography and ecology in New Zealand (ed. Kuschel, G..), pp. 186. The Hague: W. Junk B.V.Google Scholar
Fleming, C. A. 1979. The geological history of New Zealand and its life. Auckland University Press, 141 pp.Google Scholar
Fordyce, R. E. 2006. New light on New Zealand Mesozoic reptiles. Geological Society of New Zealand Newsletter 140, 615.Google Scholar
Fulthorpe, C. S., Carter, R. M., Miller, K. G. & Wilson, J. 1996. Marshall Paraconformity: a Mid-Oligocene record of inception of the Antarctic Circumpolar Current and coeval glacio-eustatic lowstand? Marine and Petroleum Geology 13, 6177.CrossRefGoogle Scholar
Gage, M. 1957. The Geology of the Waitaki Subdivision. New Zealand Geological Survey Bulletin no. 55, 135 pp.Google Scholar
Gage, M. 1970. Late Cretaceous and Tertiary rocks of Broken River, Canterbury. New Zealand Journal of Geology and Geophysics 13, 507–59.CrossRefGoogle Scholar
Gittenberger, E., Groenenberg, D. S. J., Kokshoorn, B. & Preece, R. C. 2006. Molecular trails from hitchhiking snails. Nature 439, 409.CrossRefGoogle ScholarPubMed
Green, P. S. 1994. Norfolk Island and Lord Howe Island. In Flora of Australia, vol. 49. Oceanic Islands 1 (ed. Wilson, A. J. G.), pp. 126. Canberra: Australian Government Publishing Service.Google Scholar
Griffiths, J. W., Paterson, A. M. & Vink, C. J. 2005. Molecular insights into the biogeography and species status of New Zealand's endemic Latrodectus spider species; L. katipo and L. atritus (Araneae: Theridiidae). Journal of Arachnology 33, 776–84.CrossRefGoogle Scholar
Grindley, G. W. 1961. Sheet 13 Golden Bay. Geological Map of New Zealand 1:250,000. Wellington, New Zealand: Department of Scientific and Industrial Research.Google Scholar
Grindley, G. W. 1980. Sheet S13 Cobb (1st edition). Geological Map of New Zealand 1:63,630. Wellington, New Zealand: Department of Scientific and Industrial Research.Google Scholar
Hack, J. T. 1960. Interpretation of erosional topography in humid temperate regions. American Journal of Sciences 258-A, 8097.Google Scholar
Harrington, H. S. 1958. Geology of Kaitangata Subdivision. New Zealand Geological Survey Bulletin no. 59, 139 pp.Google Scholar
Hayward, B. W., Black, P. M., Smith, I. E. M. & Balance, P. F. 2001. K–Ar ages of early Miocene arc-type volcanoes in northern New Zealand. New Zealand Journal of Geology and Geophysics 44, 285311.CrossRefGoogle Scholar
Herzer, R. H. & Mascle, J. 1996. Anatomy of a continental back-arc transform – the Vening Meinesz fracture zone northwest of New Zealand. Marine Geophysical Researches 18, 401–27.CrossRefGoogle Scholar
Herzer, R. H. 1998. Tectonic control of terrestrial species migration to New Zealand in the Early to Middle Miocene. In Geology and Genes (eds Cooper, R. A. & Jones, C. M.), pp. 35–7. Geological Society of New Zealand Miscellaneous Publication no. 97.Google Scholar
Herzer, R. H. 2003. In A link to the tropics (au. Thomas, L.), pp. 4–5. New Zealand Geographic 63.Google Scholar
Hornibrook, N. De B. 1992. New Zealand Cenozoic marine palaeoclimates: a review based on the distribution of some shallow water and terrestrial biota. In Pacific Neogene: environment evolution and events (eds Tuschi, R. & Ingle, J. C. Jr), pp. 83106. Tokyo: University of Tokyo Press.Google Scholar
Isaac, M. J. & Lindqvist, J. K. 1990. Geology and lignite resources in the East Southland Group, New Zealand. New Zealand Geological Survey Bulletin no. 101, 202 pp.Google Scholar
Isaac, M. J., Herzer, R. H., Brook, F. & Hayward, B. W. 1994. Cretaceous and Cenozoic basins of Northland, New Zealand. Institute of Geological and Nuclear Sciences Monograph no. 8, 203 pp.Google Scholar
Jones, J. G. & McDougall, I. 1973. Geological history of Norfolk and Philip Island, southwest Pacific Ocean. Journal of the Geological Society of Australia 20, 239–57.CrossRefGoogle Scholar
Kamp, P. J. J. 1986. The mid-Cenozoic Challenger Rift System of western New Zealand and its implications for the age of the Alpine Fault inception. Geological Society of America Bulletin 97, 255–81.2.0.CO;2>CrossRefGoogle Scholar
King, P. R. 1998. Palaeogeographic reconstructions of New Zealand. In Geology and Genes (eds Cooper, R. A. & Jones, C. M.), pp. 45–9. Geological Society of New Zealand Miscellaneous Publication no. 97.Google Scholar
King, P. R. 2000. Tectonic reconstructions of New Zealand: 40 Ma to the present. New Zealand Journal of Geology and Geophysics 43, 611–38.CrossRefGoogle Scholar
King, P. R., Naish, T. R., Browne, G. H., Field, B. D. & Edbrooke, S. W. 1999. Cretaceous to Recent sedimentary patterns in New Zealand. Institute of Geological and Nuclear Sciences Folio Series 1, 35 pp.Google Scholar
King, P. R. & Thrasher, G. P. 1996. Cretaceous–Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Institute of Geological and Nuclear Sciences Monograph no. 13, 243 pp.Google Scholar
Knapp, M., Stöckler, K., Havell, D., Delsuc, F., Sebastiani, F. & Lockhart, P. J. 2005. Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). PLoS Biology 3, 3843.CrossRefGoogle ScholarPubMed
Koons, P. O. 1990. Two-sided orogen: collision and erosion from the sandbox to the Southern Alps, New Zealand. Geology 18, 679–82.2.3.CO;2>CrossRefGoogle Scholar
Landis, C. A. & Youngson, J. H. 1996. Waipounamu Erosion Surface: “The Otago Peneplain”. Geological Society of New Zealand Miscellaneous Publication 91B, FT2-1FT2-9.Google Scholar
Lee, D. E., Carter, R. M., King, R. P. & Cooper, A. F. 1983. An Oligocene rocky shore community from Mt Luxmore, Fiordland (note). New Zealand Journal of Geology and Geophysics 26, 123–6.CrossRefGoogle Scholar
Lee, D. E., Lee, W. G. & Mortimer, N. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany 49, 341–56.CrossRefGoogle Scholar
Lemasurier, W. E. & Landis, C. A. 1996. Mantle-plume activity recorded by low-relief erosion surface in West Antarctica and New Zealand. Geological Society of America Bulletin 108, 1450–66.2.3.CO;2>CrossRefGoogle Scholar
Lewis, D. W. & Bellis, S. E. 1984. Mid-Tertiary unconformities in the Waitaki Subdivision, North Otago. Journal of the Royal Society of New Zealand 14, 251–76.CrossRefGoogle Scholar
Loutit, T. S., Hardenbol, J., Vail, P. R. & Baum, G. R. 1988. Condensed sections: the key to determination and correlation of continental margin sequences. In Sea-level changes: an integrated approach (eds Wilson, C. K., Hastings, B. S., Kendall, C. G. St Cl., Posamentier, H. W., Ross, C. A. & Van Wagoner, L. C.), pp. 183213. Society of Economic Palaeontologists and Mineralogists, Special Publication no. 42.CrossRefGoogle Scholar
Luyendyk, B. P. 1995. Hypothesis for Cretaceous rifting of East Gondwana caused by subducted slab capture. Geology 23, 373–6.2.3.CO;2>CrossRefGoogle Scholar
Macphail, M. K. 1997. Comment on M. Pole (1994): ‘The New Zealand flora – entirely long-distance dispersal?’ Journal of Biogeography 24, 113–17.CrossRefGoogle Scholar
Marwick, J. 1935. The geology of the Wharekuri Basin., Waitaki Valley. New Zealand Journal of Science and Technology 16, 321–38.Google Scholar
McDougall, I., Embleton, B. J. J. & Stone, D. B. 1981. Origin and evolution of Lord Howe Island, Southeast Pacific Ocean. Journal of the Geological Society of Australia 28, 155–76.CrossRefGoogle Scholar
McDowall, R. M. 2004. What biogeography is: a place for process. Journal of Biogeography 31, 345–51.CrossRefGoogle Scholar
McGlone, M. S. 2005. Goodbye Gondwana. Journal of Biogeography 32, 739–40.CrossRefGoogle Scholar
McGlone, M. S., Mildenhall, D. C. & Pole, M. S. 1996. History and paleoecology of New Zealand Nothofagus forests. In The ecology and biogeography of Nothofagus forests (eds Veblen, T. T., Hill, R. S. & Read, J.), pp. 83130. New Haven: Yale University Press.Google Scholar
McQuillan, H. 1977. Hydrocarbon potential of the North Wanganui Basin, New Zealand. The APEA Journal 17, 94104.Google Scholar
Meffre, S., Crawford, A. J. & Quilty, P. G. 2006. Arc–continent collision forming a large island between New Caledonia and New Zealand in the Oligocene. Extended Abstracts, AESC2006. Australian Earth Sciences Congress 2006, Melbourne, Australia.CrossRefGoogle Scholar
Middleton, G. V. 1973. Johannes Walther's Law of the Correlation of Facies. Geological Society of America Bulletin 84, 979–88.2.0.CO;2>CrossRefGoogle Scholar
Mildenhall, D. C. 1980. New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeography, Palaeoclimatology, Palaeoecology 31, 197233.CrossRefGoogle Scholar
Mildenhall, D. C. & Pocknall, D. P. 1989. Miocene–Pleistocene spores and pollen from Central Otago, South Island, New Zealand. New Zealand Geological Survey Palaeontological Bulletin no. 59, 128 pp.Google Scholar
Molnar, R. E. 1981. A dinosaur from New Zealand. In Gondwana Five (eds Cresswell, M. M. & Vella, P.), pp. 91–6. Fifth International Gondwana Symposium, Wellington, New Zealand. February 1980. Rotterdam: A. A. Balkema.Google Scholar
Molnar, R. E. & Wiffen, J. 1994. A Late Cretaceous polar dinosaur fauna from New Zealand. Cretaceous Research 15, 689706.CrossRefGoogle Scholar
Molnar, R. E., Wiffen, J. & Hayes, B. 1998. A probable theropod bone from the latest Jurassic of New Zealand. New Zealand Journal of Geology and Geophysics 41, 145–8.CrossRefGoogle Scholar
Morgans, H. E. G., Edwards, A. R., Scott, G. H., Graham, I. J., Kamp, P. J. J., Mumme, T. C., Wilson, G. J. & Wilson, G. S. 1999. Integrated Stratigraphy of the Waitakian–Otaian Stage boundary stratotype, Early Miocene, New Zealand. New Zealand Journal of Geology and Geophysics 42, 581614.CrossRefGoogle Scholar
Morisawa, M. 1989. Rivers and valleys of Pennsylvania revisited. Geomorphology 2, 122.CrossRefGoogle Scholar
Morris, R. & Ballance, A. 2003. Island Magic – Wildlife of the South Seas. Auckland: David Bateman Ltd, 160 pp.Google Scholar
Mortimer, N. 1993. Geology of the Otago Schist and adjacent rocks. Scale 1:500,000. Institute of Geological and Nuclear Sciences Geological Map no. 7.Google Scholar
Mortimer, N., Herzer, R. H., Gans, P. B., Parkinson, D. L. & Sewart, D. 1998. Basement geology from Three Kings Ridge to West Norfolk Ridge, southwest Pacific Ocean: evidence from petrology, geochemistry and isotopic dating of dredge samples. Marine Geology 148, 135–62.CrossRefGoogle Scholar
Nathan, S. 1996. Geology of the Buller Coalfield, scale 1:50,000. Institute of Geological and Nuclear Sciences Geological Map no. 23.Google Scholar
Nathan, S., Anderson, H. J., Cook, R. A., Herzer, R. H., Hoskins, R. H., Raine, J. L. & Smale, D. 1986. Cretaceous and Cenozoic sedimentary basins of the West Coast region, South Island, New Zealand. New Zealand Geological Survey Basin Studies no. 1, 90 pp.Google Scholar
Nelson, C. S. 1977. Grain-size parameters of insoluble residues in mixed terrigenous – skeletal carbonate sediments and sedimentary rocks: some New Zealand examples. Sedimentology 24, 3152.CrossRefGoogle Scholar
Nelson, C. S. 1978. Stratigraphy and palaeontology of the Oligocene Te Kuiti Group, Waitomo County, South Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 21, 553–94.CrossRefGoogle Scholar
Norris, R. J., Koons, P. O. & Cooper, A. F. 1990. The obliquely-convergent plate boundary in the South Island of New Zealand: implications for ancient collision zones. Journal of Structural Geology 12, 715–25.CrossRefGoogle Scholar
Paris, J.-P. 1981. Géologie de la Nouvelle Caledonie. Bureau de Recherches Géologiques et Minières Mémoire 13.Google Scholar
Park, J. 1921. Geology and Mineral Resources of western Southland. New Zealand Geological Survey Bulletin no. 23, 83 pp.Google Scholar
Parrish, J. T., Daniel, I. L., Kennedy, E. M. & Spicer, R. A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13, 149–59.CrossRefGoogle Scholar
Paterson, A., Trewick, S., Armstrong, K., Goldberg, J. & Mitchell, A. 2006. Recent and emergent: molecular analysis of the biota supports a young Chatham Islands. (Abstract) Geology and Genes III. Geological Society Miscellaneous Publication 121, 27–9.Google Scholar
Pocknall, D. T. 1990. Palynology. In Geology and lignite resources of the East Southland Group, New Zealand (eds Isaac, M. J. & Lindqvist, J. K.), pp. 141–52. New Zealand Geological Survey Bulletin no. 101.Google Scholar
Pole, M. S. 1993. Keeping in touch: vegetation prehistory on both sides of the Tasman. Australian Systematic Botany 6, 387–97.CrossRefGoogle Scholar
Pole, M. S. 1994. The New Zealand Flora – entirely long-distance dispersal? Journal of Biogeography 21, 625–35.CrossRefGoogle Scholar
Pole, M. S. 2001. Can long-distance dispersal be inferred from the New Zealand plant fossil record? Australian Journal of Botany 49, 357–66.CrossRefGoogle Scholar
Press, F. & Siever, R. 1974. Earth. San Francisco: W. H. Freeman, 945 pp.Google Scholar
Reay, M. B. 1993. Geology of the Middle Clarence Valley. Scale 1:50,000. Institute of Geological and Nuclear Sciences Geological Map no. 10, 144 pp.Google Scholar
Rest, J. S., Ast, J. C., Austin, C. C., Waddell, P. J., Tibbets, E. A., Hay, J. M. & Mindell, D. P. 2003. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Molecular Phylogenetics and Evolution 29, 289–97.CrossRefGoogle ScholarPubMed
Roelants, K. & Bossuyt, F. 2005. Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Systematic Biology 54, 111–26.CrossRefGoogle ScholarPubMed
Ryan, P. 2000. Fiji's Natural Heritage. Auckland, New Zealand: Exile Publishing Ltd, 288 pp.Google Scholar
Sanmartin, I. & Ronquist, F. 2004. Southern Hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Systematic Biology 53, 216–43.CrossRefGoogle ScholarPubMed
Skinner, B. J. & Porter, S. C. 1987. Physical Geology. New York: John Wiley and Sons, 750 pp.Google Scholar
Stevens, G. R. 1974. Rugged Landscape. Wellington, New Zealand: A.H. & A.W. Reed, 286 pp.Google Scholar
Stevens, G. R. 1985. Lands in Collision: Discovering New Zealand's Past Geography. Wellington, New Zealand: Science Information Publishing Centre, 128 pp.Google Scholar
Stevens, G. R., McGlone, M. & McCulloch, B. 1988. Prehistoric New Zealand. Auckland, New Zealand: Reed Books, 128 pp.Google Scholar
Stilwell, J. D., Consoli, C. P., Sutherland, R., Salisbury, S., Rich, T. H., Vickers-Rich, P. A., Currie, P. J. & Wilson, G. J. 2006. Dinosaur sanctuary on the Chatham Islands, Southwest Pacific: first record of theropods from the K–T boundary Takatika Grit. Palaeogeography, Palaeoclimatology, Palaeoecology 230, 243–50.CrossRefGoogle Scholar
Stirling, M. W. 1990. The Old Man Range and Garvie Mountains: tectonic geomorphology of the Central Otago peneplain, New Zealand. New Zealand Journal of Geology and Geophysics 33, 233–43.CrossRefGoogle Scholar
Stöckler, K., Daniel, I. L. & Lockhart, P. J. 2002. New Zealand Kauri (Agathis australis (D. Don) Lindl, Araucariaceae) survives Oligocene drowning. Systematic Biology 51, 827–32.CrossRefGoogle ScholarPubMed
Stratford, J. M. C. & Rodda, P. 2000. Late Miocene to Pliocene palaeogeography of Viti Levu, Fiji Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 137–53.CrossRefGoogle Scholar
Suggate, R. P., Stevens, G. R. & Te Punga, M. T. (eds) 1978. The Geology of New Zealand. Wellington: New Zealand Geological Survey, 819 pp.Google Scholar
Summerfield, M. A. 1991. Global Geomorphology. Harlow, Essex, UK: Longman Scientific and Technical, 537 pp.Google Scholar
Sutherland, R. 1999. Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics 308, 341–62.CrossRefGoogle Scholar
Sutherland, R., Barnes, P. & Uruski, C. I. 2006. Miocene–Recent deformation, surface elevation, and volcanic intrusion of the overriding plate during subduction initiation, offshore southern Fiordland, Puysegur margin, southwest New Zealand. New Zealand Journal of Geology and Geophysics 49, 131–49.CrossRefGoogle Scholar
Swenson, U. A., Backlund, S., McLoughlin, S. & Hill, R. S. 2001. Nothofagus biogeography revisited with special emphasis to the enigmatic distribution of subgenus Brassospora in New Caledonia. Cladistics 17, 2847.CrossRefGoogle Scholar
Thornbury, W. D. 1969. Principles of Geomorphology. New York: Wiley, 594 pp.Google Scholar
Trewick, S. A. 1997. Flightlessness and phylogeny amongst endemic rails (Aves: Rallidae) of the New Zealand region. Philosophical Transactions of the Royal Society, London Series B 352, 429–46.CrossRefGoogle ScholarPubMed
Trewick, S. A. 2000. Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. Journal of Biogeography 27, 11891200.CrossRefGoogle Scholar
Trewick, S. A., Paterson, A. M. & Campbell, H. J. 2007. Hello New Zealand (Guest Editorial). Journal of Biogeography 34, 16.CrossRefGoogle Scholar
Turnbull, I. M., Barry, J. M., Carter, R. M. & Norris, R. J. 1975. The Bobs Cove Beds and their relationship to the Moonlight Fault Zone. Journal of the Royal Society 5, 355–94.CrossRefGoogle Scholar
Turnbull, I. M. & Uruski, C. I. 1990. Stratigraphy and structural evolution of the West Southland Sedimentary Basins. In 1989 New Zealand Oil Exploration Proceedings, pp. 225–40. Petroleum and Geothermal Unit, Ministry of Commerce, Wellington.Google Scholar
Turnbull, I. M., Uruski, C. I., Anderson, H. J., Lindqvist, J. K., Scott, G. H., Morgans, H. E. G., Hoskins, R. H., Raine, J. I., Mildenhall, D. C., Pocknall, D. T., Beu, A. G., Maxwell, P. A., Smale, D., Watters, W. A. & Field, B. D. 1993. Cretaceous and Cenozoic sedimentary basins of western Southland, New Zealand. Institute of Geological and Nuclear Sciences Monograph no. 1, 86 pp.Google Scholar
Ward, C. M. 1988. Marine Terraces of the Waitutu district and their relation to the late Cenozoic tectonics of the southern Fiordland region, New Zealand. Journal of the Royal Society of New Zealand 18, 128.CrossRefGoogle Scholar
Wardle, J. 1963. Evolution and distribution of the New Zealand flora, as affected by Quaternary climates. New Zealand Journal of Botany 1, 317.CrossRefGoogle Scholar
Wardle, J. 1984. The New Zealand beeches: ecology, utilization and management. New Zealand Forest Service. Christchurch: Caxton Press, 447 pp.Google Scholar
Waters, J. M. & Craw, D. 2006. Goodbye Gondwana? New Zealand biogeography, geology and the problem of circularity. Systematic Biology 55, 351–6.CrossRefGoogle ScholarPubMed
Wellman, H. W. 1953. The Geology of Geraldine Subdivision. New Zealand Geological Survey Bulletin no. 50, 72 pp.Google Scholar
Wellman, H. W. 1979. An uplift map for the South Island of New Zealand and a model for the uplift of the Southern Alps. Royal Society of New Zealand Bulletin 18, 1320.Google Scholar
Wiffen, J. & Molnar, R. E. 1989. Upper Cretaceous ornithopod from New Zealand. Geobios 22, 531–6.CrossRefGoogle Scholar
Wilson, K.-J. 2004. Flight of the Huia. Christchurch, New Zealand: Canterbury University Press, 411 pp.Google Scholar
Wood, B. L. 1956. The geology of the Gore Subdivision. New Zealand Geological Survey Bulletin no. 53, 128 pp.Google Scholar
Wood, B. L. 1969. Periglacial tor topography in southern New Zealand. New Zealand Journal of Geology and Geophysics 12, 361–73.CrossRefGoogle Scholar
Worthy, T. H., Hand, S. F., Archer, M. & Tennyson, A. D. 2006 a. The St Bathans fauna – first insight into Neogene terrestrial vertebrate faunas in New Zealand. In Geology and Genes III (eds Trewick, S. A. & Phillips, M. J.), pp. 35–6. Geological Society Miscellaneous Publication no. 121.Google Scholar
Worthy, T. H., Tennyson, A. D., Archer, M., Musser, A. M., Hand, S. F., Jones, C., Douglas, B. J., McNamara, J. A. & Beck, R. M. D. 2006 b. Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proceedings of the National Academy of Sciences of the United States of America 103, 19419–23.CrossRefGoogle ScholarPubMed
Youngson, J. H. 2005. Diagenetic silcrete and formation of silcrete ventifacts and aeolian gold placers in Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics 48, 247–64.CrossRefGoogle Scholar