Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-20T17:48:03.812Z Has data issue: false hasContentIssue false

Age and significance of Upper Cretaceous siliciclastic turbidites in the central Pindos Mountains, Greece

Published online by Cambridge University Press:  01 May 2009

M. Wagreich
Affiliation:
Institute of Geology, Geocenter, University of Vienna, Althanstraße 14, A-1010 Vienna, Austria
A. Pavlopoulos
Affiliation:
Laboratory of Mineralogy-Geology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece
P. Faupl
Affiliation:
Institute of Geology, Geocenter, University of Vienna, Althanstraße 14, A-1010 Vienna, Austria
G. Migiros
Affiliation:
Laboratory of Mineralogy-Geology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece

Abstract

A significant 5- to 30-metre-thick interval of siliciclastic turbidites forming the First Flysch is present in the deep-water succession of the Pindos Zone. Nannofossil investigations in the central parts of the Pindos Mountains of mainland Greece indicate an assemblage of the Marthasterites furcatus zone (CC13). The presence of M. furcatus, together with common Quadrum gartneri suggests that the turbidites were deposited mainly during the middle to upper part of the late Turonian. The siliciclastic turbidites are interpreted as deposits of a lowstand fan as a result of a pronounced short-time eustatic sea-level drop in the late Turonian.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhangelsky, A. D., 1912. Upper Cretaceous deposits of East European Russia. Materialien zur Geologie Russlands 25, 1631.Google Scholar
Aubion, J., 1957. Essai de corrélation stratigraphique en Grèce occidentale. Bulletin Société Géologique de France 7, 281304.CrossRefGoogle Scholar
Aubion, J., Bonneau, M, Celet, P., Charvet, J. et al. , 1970. Contribution à la géologie des Hellénides: Le Gavrovo, le Pinde et la zone ophiolithique subpelagonienne. Annales de la Société Géologique du Nord 90, 277306.Google Scholar
Baltuck, M., 1982. Provenance and distribution of Tethyan pelagic and hemipelagic siliceous sediments, Pindos Mountains, Greece. Sedimentary Geology 31, 6388.CrossRefGoogle Scholar
Black, M., & Barnes, B., 1959. The structure of coccoliths from the English Chalk. Geological Magazine 96, 321–8.CrossRefGoogle Scholar
Brönnimann, P., 1955. Microfossils incertae sedis from the Upper Jurassic and Lower Cretaceous of Cuba. Micropaleontology 1, 2851.CrossRefGoogle Scholar
Bramlette, M. N., & Martini, E., 1964. The great change in calcareous nannoplankton fossils between the Maestrichtian and Danian. Micropaleontology 10, 291322.CrossRefGoogle Scholar
Bukry, D., 1969. Upper Cretaceous coccolits from Texas and Europe. University of Kansas, Paleontological Contributions 51, 179.Google Scholar
Cech, S., 1989. Upper Cretaceous Didymotis events from Bohemia. In Cretaceous of the Western Tethys (ed. Wiedmann, J.), pp. 657–76. Proceedings of the 3rd International Cretaceous Symposium, Tübingen.Google Scholar
Crux, J. A., 1982. Upper Cretaceous (Cenomanian to Campanian) calcareous nannofossils. In Stratigraphical Index of Calcareous Nannofossils (ed. Lord, A. R..), pp. 81135. British Micropalaeontological Society.Google Scholar
Deflandre, G., 1952. Classe des coccolithophoridés. In Traité de Zoologie, Volume 1 (ed. Grasse, P. P.), pp. 439–70.Google Scholar
Deflandre, G., 1959. Sur les nannofossiles calcaires et leur systématique. Revue de Micropaleontologie 2, 127–52.Google Scholar
Deflandre, G., 1963. Sur les Microrhabdulidés, famille nouvelle de nannofossiles calcaires. C. r. Seances Academie Sciences Paris 256, 3484–6.Google Scholar
Deflandre, G., & Fert, C., 1954. Observations sur les Coccolithophoridés actuels et fossiles en microscopie ordinaire et éiectronique. Annales Paléontologie 40, 115–76.Google Scholar
Faupl, P., Pavlopoulos, A., Wagreich, M., & Migiros, G., 1994. Heavy mineral studies on certain turbiditic sequences in the Greek mainland: preliminary results. Abstracts 7th Congress of the Geological Society of Greece, p. 151.Google Scholar
Fleury, J.-J. 1980. Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grèce continentale et Péloponnèse du Nord). Evolution d'une plate-forme et un bassin dans le cadre alpin. Sociètè Gèologique du Nord, Publication no. 4, 651 pp.Google Scholar
Forchheimer, S., 1972. Scanning electron microscope studies of Cretaceous coccoliths from the Köpingsberg Borehole No. 1, SE Sweden. Sveriges Geol. Undersökning, Serie C. 668 65,1141.Google Scholar
Gartner, S., 1968. Coccoliths and related calcareous nannofossils from Upper Cretaceous deposits of Texas and Arkansas. University of Kansas, Paleontological Contributions 48, 156.Google Scholar
Gorka, H., 1957. Les coccolithophoridés du Maestrichtien supérieur de Pologne. Ada Paleontologica Pologne 2, 235284.Google Scholar
Haq, B., Hardenbol, J., & Vail, P., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–66.CrossRefGoogle ScholarPubMed
Haq, B. U., 1991. Sequence stratigraphy, sea-level change, and significance for the deep sea. Special Publication of the International Association of Sedimentologists 12, 339.Google Scholar
Haq, B. U., 1993. Deep-sea response to eustatic change and significance of gas hydrates for continental margin stratigraphy. Special Publication of the International Association of Sedimentologists 18, 93106.Google Scholar
Jacobshagen, V., 1986. Geologie von Griechenland. Berlin: Bornträger, 363 pp.Google Scholar
Jones, G., De Wever, P., & Robertson, A. H. F., 1992. Significance of radiolarian age data to the Mesozoic tectonic tonic and sedimentary evolution of the northern Pindos Mountains, Greece. Geological Magazine 129, 385400.CrossRefGoogle Scholar
Krhovsky, J., 1981. The stratigraphical position of the lower boundary of the Marthasterites furcatus nannoplankton Zone in the Bohemian Cretaceous Basin. Vestnik Ustredniho ustavu geologickeho Prague 56, 21–6.Google Scholar
Maillot, H., 1979. Etude sédimentologique du ‘Premier Flysch’ en Peloponnèse occidental (Grèce): la Formation d' Andritsena. Bulletin of the Geological Society of Greece 14, 94115.Google Scholar
Manivit, H., 1965. Nannofossiles calcaires de L' Albo-Aptien. Revue de Micropaleontologie 8, 189201.Google Scholar
Manivit, H., 1971. Les nannofossiles calcaires du Crétacé francais (de l' Aptien au Danien). Essai de biozonation appuyée sur les stratotypes. Thesis Université de Paris.Google Scholar
Manivit, H., Perch-Nielsen, K., Prins, B., & Verbeek, J. W., 1977. Mid Cretaceous calcareous nannofossil biostratigraphy. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B80, 169–81.Google Scholar
Mutti, E., 1985. Turbidite systems and their relations to depositional sequences. In Provenance of Arenites (ed. Zuffa, G. G.), pp. 6593. Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar
Naji, F., 1995. On the Turonian/Coniacian boundary in Germany. Abstracts 2nd Symposium on Cretaceous Stage Boundaries Brussels, p.86.Google Scholar
Noel, D., 1970. Coccolithes Crétacés. La Craie Campanienne du Bassin de Paris. CNRS Paris, 129 pp.Google Scholar
Pe-Piper, G., & Piper, D. J. W., 1989. The geological significance of manganese distribution in Jurassic—Cretaceous rocks of the Pindos Basin, Peloponnese, Greece. Sedimentary Geology 65, 127–37.CrossRefGoogle Scholar
Perch-Nielsen, K., 1968. Der Feinbau und die Klassifikation der Coccolithen aus dem Maastrichtien von Dänemark. Kong. Danske Vidensk. Selskab, Biol. Skrift. 16 /1, 196.Google Scholar
Reinhardt, P., 1965. Neue Familien für fossile Kalkflagellaten (Coccolithophoriden, Coccolithineen). Monatsberichte der Deutschen Akademie der Wissenschaften 7, 3040.Google Scholar
Reinhardt, P., 1966. Fossile Vertreter coronoider und styloider Coccolithen (Familie Coccolithaceae Poche 1913). Monatsberichte der Deutschen Akademie der Wissenschaften 8, 513–24.Google Scholar
Perch-Nielsen, K., 1973. Neue Coccolithen aus dem Maastrichtien von Dänemark, Madagaskar und Ägypten. Bulletin of the Geological Society of Denmark 22, 306–33.Google Scholar
Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. and Perch-Nielsen, K.), pp. 329426. Cambridge University Press.Google Scholar
Piper, D. J. W., & Pe-Piper, G., 1980. Was there a western (external) source of terrigenous sediment for the Pindos zone of the Peloponnese (Greece)? Neues Jahrbuch für Geologie und Palädontologie Monatshefte 1980, 107–15.CrossRefGoogle Scholar
Posamentier, H. W., & Vail, P. R., 1988. Eustatic controls on clastic deposition II — sequence and systems tract models. In Sea-level changes — an integrated approach (eds Wilgus, C. K., Hastings, B. S., Kendall, C. G. S. C., Posamentier, H., Ross, C. A. and van Wagoner, J.), pp. 125–54. Society of Economic Paleontologists and Mineralogists, Special Publication no. 42.CrossRefGoogle Scholar
Renz, C., 1955. Die vorneogene Stratigraphie der normalsedimentären Formationen Griechenlands. Institute of Geology and Subsurface Research Athens, 637 pp.Google Scholar
Richter, D., Mihm, A., & Müller, C., 1992. Die faziellen und paläogeographischen Beziehungen zwischen Pindos-Zone und Koziakas-Einheit sowie der Ophiolith-Komplex in West-Thessalien (Griechenland). Zeitschrift der Deutschen geologischen Gesellschaft 143, 6785.CrossRefGoogle Scholar
Richter, D., & Müller, C., 1993. Der ‘Erste Flysch’ in der Pindos-Zone (Griechenland)? Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1993, 209–26.CrossRefGoogle Scholar
Richter, D., Müller, C., & Mihm, A., 1991. Die faziellen Beziehungen zwischen Pamass- und Pindos-Zone sowie die Vulkanite im Gebiet nördlich von Eratini (Kontinentalgriechenland). Zeitschrift der Deutschen geologischen Gesellschaft 142, 6786.CrossRefGoogle Scholar
Richter, D., Müller, C., & Mihm, A., 1993. Die Flysch-Zonen Griechenlands V. Zur Stratigraphie des Flysches der Pindos-Zone im nördlichen Pindos-Gebirge zwischen der albanischen Grenze und der Querzone von Kastaniotikos (Griechenland). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1993, 257–91.CrossRefGoogle Scholar
Robaszynski, F., Caron, M., Dupuis, C., Amedro, F., Gonzalez, Donoso J.-M., Linares, D., Hardenbol, J., Gartner, S., Calandra, F., & Deloffre, R., 1990. A tentative integrated stratigraphy in the Turanian of Central Tunisia: Formations, zones and sequential stratigraphy in the Kalaat Senan Area. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 14, 213384.Google Scholar
Robertson, A. H. F., Clift, P. D., Degnan, P. J., & Jones, G., 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Schlager, W., Reumer, J. J. G., & Droxler, A., 1994. Highstand shedding of carbonate platforms. Journal of Sedimentary Research B64, 270–81.Google Scholar
Shanmugam, G., & Moiola, R. J., 1988. Submarine fans: characteristics, models, classification, and reservoir potential. Earth Science Reviews 24, 383428.CrossRefGoogle Scholar
Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw 56, 3756.Google Scholar
Stover, L.E., 1966. Cretaceous coccoliths and associated nannofossils from France and the Netherlands. Micropaleontology 12, 133–67.CrossRefGoogle Scholar
Stradner, H., 1962. Über neue und wenig bekannte Nannofossilien aus Kreide und Alttertiär. Verhandlungen der Geologischen Bundesanstalt Wien 1962, 363–77.Google Scholar
Stradner, H., 1963. New contributions to Mesozoic stratigraphy by means of nannofossils. Proceedings of the 6th World Petroleum Congress, Section 1, Paper 4, 116.Google Scholar
Thierstein, H. R., 1971. Tentative Lower Cretaceous nannoplankton zonation. Eclogae geologica Helvetica 64, 459–88.Google Scholar
Verbeek, J.W. 1977. Calcareous nannoplankton biostratigraphy of Middle and Upper Cretaceous deposits in Tunisia, Southern Spain and France. Utrecht Micropaleontological Bulletin 16, 157 pp.Google Scholar
Wagreich, M., 1992 a. A review of low latitude ‘Tethyan’ nanno fossil assemblages of the Cretaceous. In New Aspects on Tethyan Cretaceous Fossil Assemblages (eds Kollmann, H.A. and Zapfe, H.), pp. 4555. Schriftenreihe der Erdwissenschaftlichen Kommission der Österreichischen Akademie der Wissenschaften no. 9.CrossRefGoogle Scholar
Wagreich, M., 1992B. Correlation of Late Cretaceous calcareous nannofossil zones with ammonite zones and planktonic foraminifera: the Austrian Gosau sections. Cretaceous Research 13, 505–16.CrossRefGoogle Scholar
Wise, S. W. Jr, & Wind, F. H., 1977. Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, SW Atlantic sector of the Southern Ocean. Initial Reports of the Deep Sea drilling Project 36, 296309.Google Scholar
Wood, C. J., Ernst, G., & Rasemann, G., 1984. The Turonian-Coniacian stage boundary in Lower Saxony (Germany) and adjacent areas: the Salzgitter-Salder Quarry as a proposed international standard section. Bulletin of the Geological Society of Denmark 33, 225–38.CrossRefGoogle Scholar