Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T08:17:09.309Z Has data issue: false hasContentIssue false

Age distribution of cinder cones within the Bandas del Sur Formation, southern Tenerife, Canary Islands

Published online by Cambridge University Press:  16 September 2008

JÖRG KRÖCHERT
Affiliation:
Institut für Planetologie, Universität Stuttgart, Herdweg 51, 70174 Stuttgart, Germany
ELMAR BUCHNER*
Affiliation:
Institut für Planetologie, Universität Stuttgart, Herdweg 51, 70174 Stuttgart, Germany
*
*Author for correspondence: elmar.buchner@geologie.unistuttgart.de

Abstract

The Quaternary Bandas del Sur Formation in the south of Tenerife comprises a complex sequence of pyroclastic rocks and lavas. In contrast to the NW- and NE-Rift zone on Tenerife, the S-Rift zone comprises a number of characteristics with respect to the morphological features, eruption cyclicity and the geochemistry of the volcanic deposits. Various flank eruptions of the Las Cañadas volcano associated with basaltic lavas and the formation of cinder cones within the Bandas del Sur are important volcanic units for understanding the explosive volcanic cycles during the Pleistocene on Tenerife. A number of palaeomagnetic studies, as well as major and trace element geochemistry and two radio-isotope dates (K–Ar), have been carried out on prominent cinder cones, in order to discover their stratigraphic position. Combining our results with previous K–Ar data, the cones and lavas can be subdivided into three stratigraphic units. The first unit contains cinder cones with reverse magnetization and Y/Nb ratios between 0.37 and 0.41. Cinder cones which belong to the second unit show normal magnetization and Y/Nb ratios of < 0.35. The third unit comprises cinder cones with normal magnetization and Y/Nb ratios of about 0.47. The first two units were constructed between c. 0.948–0.779 Ma and 0.323–0.300 Ma. These units define volcanic cycles ending in violent Plinian eruptions. The third and youngest unit possibly marks the beginning of a further volcanic cycle that started c. 0.095 Ma ago.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablay, G. J., Carrol, M. R., Palmer, M. R., Martí, J. & Sparks, R. S. J. 1998. Basanite–phonolite lineages of Teide–Pico Viejo volcanic complex, Tenerife, Canary Islands. Journal of Petrology 39, 905–36.CrossRefGoogle Scholar
Ablay, G. J., Ernst, G. G. J., Martí, J. & Sparks, R. S. J. 1995. The ~2 ka subplinian eruption of Montaña Blanca, Tenerife. Bulletin of Volcanology 57, 337–55.Google Scholar
Ablay, G. J. & Martí, J. 2000. Stratigraphy, structure, and volcanic evolution of Pico Teide–Pico Viejo formation, Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research 103, 175208.CrossRefGoogle Scholar
Abratis, M., Schmincke, H.-U. & Hansteen, T. H. 2002. Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. International Journal of Earth Science 91, 562–82.CrossRefGoogle Scholar
Acosta, J., Uchupi, E., Smith, D., Muñoz, A., Herranz, P., Palomo, C., Lianes, P., Ballesteros, M. & ZEE Working Group. 2003. Comparison of volcanic rifts on La Palma and El Hierro, Canary Islands and the Islands of Hawaii. Marine Geophysical Researches 24, 5990.CrossRefGoogle Scholar
Ancochea, E., Fuster, J. M., Ibarrola, E., Cendero, A., Coello, J., Hernan, F., Cantagrel, J. M. & Jamond, C. 1990. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. Journal of Volcanology and Geothermal Research 44, 231–49.CrossRefGoogle Scholar
Ancochea, E. & Huertas, M. J. 2003. Age and composition of the Amanay Seamount, Canary Islands. Marine Geophysical Researches 24, 161–9.CrossRefGoogle Scholar
Araña, V., Barberi, F. & Ferrara, G. 1989. El complejo volcánico del Teide–Pico Viejo. In Los Volcanes y La Caldera del Parque Nacional del Teide (Tenerife, Islas Canarias) (eds Callao, J. & Araña, V.), pp. 101–26. Madrid: ICONA.Google Scholar
Bellido Mulas, F., Brandle Matesanz, J. L., Hernández-Pacheco, A. & Fernández Santín, S. 1978. Mapa geológico de España, 1:25000. 1.118-II. Valle de San Lorenzo. IGME.Google Scholar
Brown, R. J., Barry, T. L., Branney, M. J., Pringle, M. S. & Bryan, S. E. 2003. The Quaternary pyroclastic succession of southeast Tenerife, Canary Islands: explosive eruptions, related caldera subsidence, and sector collapse. Geological Magazine 140, 265–88.CrossRefGoogle Scholar
Bryan, S. E. 2006. Petrology and Geochemistry of the Quaternary Caldera-forming, Phonolitic Granadilla Eruption, Tenerife (Canary Islands). Journal of Petrology 17, 1557–89.CrossRefGoogle Scholar
Bryan, S. E., Martí, J. & Cas, R. A. F. 1998. Stratigraphy of the Bandas del Sur Formation: an extracaldera record of the Quaternary phonolitic explosive eruptions from the Las Cañadas edifice, Tenerife (Canary Islands). Geological Magazine 135, 605–36.CrossRefGoogle Scholar
Bryan, S. E., Martí, J. & Leosson, M. 2002. Petrology and Geochemistry of the Bandas del Sur Formation, Las Cañadas Edifice, Tenerife (Canary Islands). Journal of Petrology 43, 1815–56.CrossRefGoogle Scholar
Carracedo, J. C. 1979. Paleomagnetismo e historia volcanica de Tenerife Aula de Cultura. Cabildo Insular de Tenerife, Tenerife, 81 pp.Google Scholar
Carracedo, J. C. 1994. The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. Journal of Volcanology and Geothermal Research 60, 225–41.CrossRefGoogle Scholar
Carracedo, J. C., Paterne, M., Guillou, H., Pérez Torrado, F. J. & Paris, R. 2003. Dataciones radiometricas (14C Y K/Ar) del Teide y el rift nordoeste, Tenerife, Islas Canarias. Estudios Geologicos 59, 1529.CrossRefGoogle Scholar
Carracedo, J. C., Rodríguez Badiola, E., Guillou, H., Paterne, M., Scaillet, S., Perez Torrado, F. J., Paris, R., Fra-Paleo, U. & Hansen, A. 2007. Eruptive and structural history of Teide Volcano and rift zones on Tenerife, Canary Islands. Geological Society of America Bulletin 119, 1027–51.CrossRefGoogle Scholar
Christiansen, R. L. 2001. The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geological Survey, Professional Paper 729-G, 145 pp. Reston, Virginia.Google Scholar
Clarke, H., Troll, V. R., Carracedo, J. C., Byrne, K. & Gould, R. 2005. Changing eruptive styles and textural features from phreatomagmatic to Strombolian activity of basaltic littoral cones: Los Erales cinder cone, Tenerife, Canary Islands. Estudios Geologicos 61, 121–34.CrossRefGoogle Scholar
Doell, R. R. & Cox, A. 1962. Determination of the magnetic polarity of rock samples in the field. U.S. Geological Survey Research 450-D, 105–8.Google Scholar
Druitt, T. H., Edwards, L., Mellors, R. A., Pyle, D. M., Sparks, R. S. J., Lanphere, M., Davies, M. & Barreiro, B. 1999. Santorini volcano. Geological Society of London, Memoir no. 19, 165 pp.Google Scholar
Druitt, T. H., Mellors, R. A., Pyle, D. M. & Sparks, R. S. J. 1989. Explosive volcanism on Santorini, Greece. Geological Magazine 126, 95126.CrossRefGoogle Scholar
Edgar, C. J., Wolff, J. A., Olin, P. H., Nichols, H. J., Pittari, A., Cas, R. A. F., Reiners, P. W., Spell, T. L. & Martí, J. 2007. The late Quaternary Diego Hernandez Formation, Tenerife: Volcanology of a complex cycle of voluminous explosive phonolitic eruptions. Journal of Volcanology and Geothermal Research 160, 5985.CrossRefGoogle Scholar
Fuster, J. M., Araña, V., Brandle, J. L., Navarro, J. M., Alonso, U. & Aparicio, A. 1968. Geology and volcanology of the Canary Islands: Tenerife. Madrid: Instituto Lucas Mallada, CSIC, 218 pp.Google Scholar
Fuster, J. M., Ibarrola, E., Snelling, N. J., Cantagrel, J. M., Huertas, M. J., Coello, J. & Ancochea, E. 1994. Cronología K–Ar de la Formación Cañadas en el sector Suroeste de Tenerife: Implicaciones de los episodios piroclásticos en la evolución volcánica. Boletin de la real Sociedad Española de Historia Natural (Seccion geologica) 89, 2541.Google Scholar
Galindo, I. & Soriano, C. 2005. Structural evolution of the NE rift zone of Tenerife, Canary Islands. Geophysical Research Abstracts 7, EGU05-A-05367.Google Scholar
Graham, K. W. T. 1961. The remagnetization of a surface outcrop by lightning currents. Geophysical Journal 6, 85102.CrossRefGoogle Scholar
Guillou, H., Carracedo, J. C., Paris, R. & Pérèz Torrado, F. J. 2004 a. Implications for early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth and Planetary Science Letters 222, 599614.CrossRefGoogle Scholar
Guillou, H., Perez Torrado, F. J., Hansen Machin, A. R., Carracedo, J. C. & Gimeno, D. 2004 b. The Plio-Quaternary volcanic evolution of Gran Canaria based on new K–Ar ages and magnetostratigraphy. Journal of Volcanology and Geothermal Research 135, 221–46.CrossRefGoogle Scholar
Hernández-Pacheco, A. & Fernández Santín, S. 1978. Mapa geológico de España, 1:25000. 1.119-IV. Lomo de Arico. IGME.Google Scholar
Huertas, M. J., Arnaud, N. O., Ancochea, E., Cantagrel, J. M. & Fúster, J. M. 2002. 40Ar/39Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution. Journal of Volcanology and Geothermal Research 115, 351–65.CrossRefGoogle Scholar
Kröchert, J., Maurer, H. & Buchner, E. 2008. Fossil beaches as evidence for significant uplift of Tenerife, Canary Islands. Journal of African Earth Sciences 51, 220–34.CrossRefGoogle Scholar
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. 1986. A Chemical Classification of Volcanic Rocks Based on Total Alkali–Silica Diagram. Journal of Petrology 27, 745–50.CrossRefGoogle Scholar
Martí, J., Andujar, J. & Wolff, J. A. 2004. Interaction between basaltic and phonolitic magma systems in Tenerife (Canary Islands): Implications for eruptive dynamics. Geophysical Research Abstracts 6, EGU04-A-04799.Google Scholar
Martí, J., Hurlimann, M., Ablay, G. J. & Gudmundsson, A. 1997. Vertical and lateral collapse on Tenerife (Canary Islands) and other volcanic ocean islands. Geology 25, 879–82.2.3.CO;2>CrossRefGoogle Scholar
Martí, J., Mitjavila, J. & Araña, V. 1994. Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geological Magazine 131, 715–27.CrossRefGoogle Scholar
McDonough, W. F., Sun, S., Ringwood, A. E., Jagoutz, E. & Hofman, A. W. 1992. K, Rb, and Cs in the earth and moon and the evolution of the earth's mantle. Geochimica et Cosmochimica Acta 56, 1001–12.CrossRefGoogle Scholar
Neumann, E. R., Wulff-Pedersen, E. & Simonsen, S. L. 1999. Evidence for Fractional Crystallisation of Periodically Refilled Magma Chambers in Tenerife, Canary Islands. Journal of Petrology 40, 10891123.CrossRefGoogle Scholar
Paris, R., Guillou, H., Carracedo, J. C. & Perez Torrado, F. J. 2006. Volcanic and morphological evolution of La Gomera (Canary Islands), based on new K–Ar ages and magnetic stratigraphy: implications for oceanic island evolution. Journal of the Geological Society, London 162, 501–12.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Price, R. C. & Chappell, B. W. 1975. Fractional Crystallisation and the Petrology of Dunedin Volcano. Contribution to Mineralogy and Petrology 53, 157–82.CrossRefGoogle Scholar
Saunders, A. D. & Tarney, J. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In Marginal basin geology (eds Kokelaar, B. P. & Howells, M. F.), pp. 5976. Geological Society of London, Special Publication no. 16.Google Scholar
Simonsen, S. L., Neumann, E. R. & Seim, K. 2000. Sr–Nd–Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). Journal of Volcanology and Geothermal Research 103, 299312.CrossRefGoogle Scholar
Singer, B. S. & Pringle, M. S. 1996. Age and duration of the Matuyama-Brunhes geomagnetic reversal from 40Ar/39Ar incremental heating analysis of lavas. Earth and Planetary Science Letters 139, 4761.CrossRefGoogle Scholar
Sun, S. S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society of London A297, 409–45.Google Scholar
Walter, T. R. & Troll, V. R. 2003. Experiments on rift zone evolution in unstable volcanic edifices. Journal of Volcanology and Geothermal Research 127, 107–20.CrossRefGoogle Scholar
Weaver, B. L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constrains. Earth and Planetary Science Letters 104, 381–97.CrossRefGoogle Scholar
Widom, E., Gill, J. B. & Schmincke, H.-U. 1993. Syenite Nodules as a Long-Term Record of Magmatic Activity in Agua de Pao Volcano, Sao Miguel, Azores. Journal of Petrology 34, 929–53.CrossRefGoogle Scholar
Wolff, J. A. 1987. Crystallisation of nepheline syenite in a subvolcanic magma system; Tenerife, Canary Islands. Lithos 20, 207–23.CrossRefGoogle Scholar
Wolff, J. A., Grandy, J. S. & Larson, P. B. 2000. Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from Diego Hernandez Formation, Las Cañadas, Tenerife. Journal of Volcanology and Geothermal Research 103, 343–66.CrossRefGoogle Scholar
Zellmer, G., Turner, S. & Hawkesworth, C. 2000. Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth and Planetary Science Letters 174, 265–81.CrossRefGoogle Scholar
Supplementary material: File

Krochert Supplementary Material

Appendix Table 1.doc

Download Krochert Supplementary Material(File)
File 30.2 KB
Supplementary material: File

Krochert Supplementary Material

Appendix Table 2.doc

Download Krochert Supplementary Material(File)
File 84 KB