Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T05:01:29.520Z Has data issue: false hasContentIssue false

Age, Hf isotope and trace element signatures of detrital zircons in the Mesoproterozoic Eriksfjord sandstone, southern Greenland: are detrital zircons reliable guides to sedimentary provenance and timing of deposition?

Published online by Cambridge University Press:  16 November 2012

TOM ANDERSEN*
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047, Blindern, N-0316 Oslo, Norway

Abstract

The Gardar Rift in southern Greenland developed within Palaeoproterozoic rocks of the Ketilidian orogen, near its boundary with the Archaean craton. The Eriksfjord Formation was deposited at c. 1.3 Ga on a basement of c. 1.8 Ga Julianehåb I-type granite. Detrital zircons from the lower sandstone units shows a range of ages and εHf compatible with proto sources within the Archaean craton and the Nagssugtoquidian mobile belt north and east of the craton; zircons that can be attributed to juvenile Ketilidian sources are less abundant. This suggests a predominance of distant sources, probably by recycling of older and no longer preserved cover strata. A significant fraction of c. 1300 Ma zircons have εHf between 0 and −38. Rather than originating from a hitherto unknown igneous body within the Gardar Rift, these are interpreted as Palaeoproterozoic to late Archaean zircons that have lost radiogenic lead during diagenesis and post-depositional thermal alteration related to Gardar magmatism. Although the sediments originate from sources within Greenland, the age and initial Hf isotope distribution of Palaeoproterozoic and Archaean zircons mimics that of granitoids from the Fennoscandian Shield. This may reflect parallel evolution and possible long-range exchange of detritus in Proterozoic supercontinent settings. The lesson to be learned is that detrital zircon age data should not be used to constrain the age of sedimentary deposition unless the post-depositional history is well understood, and that recycling of old sediments, long-range transport and parallel evolution of different continents make detrital zircons unreliable indicators of provenance.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaart, J. H. 1976. Ketilidian mobile belt in southern Greenland. In Geology of Greenland (eds Escher, A. & Watt, W. S.), pp. 121–51. Copenhagen: Geological Survey of Greenland.Google Scholar
Amelin, Y., Lee, D.-C. & Halliday, A. N. 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205–25.Google Scholar
Andersen, T. 1997. Age and petrogenesis of the Qassiarsuk carbonatite – alkaline ultramafic volcanic complex in the Gardar rift, South Greenland. Mineralogical Magazine 61, 499513.CrossRefGoogle Scholar
Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology 216, 249–70.Google Scholar
Andersen, T. 2008. Coexisting silicate and carbonatitic magmas in the Qassiarsuk complex, Gardar Rift, SW Greenland. The Canadian Mineralogist 46, 933–50.CrossRefGoogle Scholar
Andersen, T., Andersson, U. B, Graham, S., Åberg, G. & Simonsen, S. L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, London 166, 233–48.Google Scholar
Andersen, T., Graham, S. & Sylvester, A. G. 2007. Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: new results from laser-ablation ICPMS U-Pb dating of zircon. Norges geologiske underskelse, Bulletin 447, 1731.Google Scholar
Andersen, T, Graham, S. & Sylvester, A. G. 2009. The geochemistry, lutetium-hafnium isotope systematics and petrogenesis of late Mesoproterozoic A-type granites in southwestern Fennoscandia. The Canadian Mineralogist 47, 1399–422.Google Scholar
Andersen, T., Griffin, W. L., Jackson, S. E., Knudsen, T.-L. & Pearson, N. J. 2004. Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73, 289318.Google Scholar
Andersen, T., Griffin, W. L. & Pearson, N. J. 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43, 1725–47.Google Scholar
Andersen, T., Sayeed, A., Gabrielsen, R. H. & Olaussen, S. 2011. Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U-Pb, Lu-Hf and trace element analyses of detrital zircons by laser ablation ICMPS. Norwegian Journal of Geology 91, 119.Google Scholar
Barnes, C. G., Frost, C. D., Yoshinobu, A. S., McArthur, K., Barnes, M., Allen, C. M., Nordgulen, Ø. & Prestvik, T. 2007. Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides. Geosphere 3, 683703.Google Scholar
Barr, S. M., Davis, D. W., Kamo, S. & White, C. E. 2003. Significance of U–Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Canada. Precambrian Research 126, 125–45.Google Scholar
Belousova, E. A., Griffin, W. L. & O'Reilly, S. Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from eastern Australian granitoids. Journal of Petrology 47, 329–53.CrossRefGoogle Scholar
Belousova, E., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22.CrossRefGoogle Scholar
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y. & Pearson, N. J. 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457–66.Google Scholar
Bingen, B., Birkeland, A., Nordgulen, Ø. & Sigmond, E. M. O. 2001. Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments. Precambrian Research 108, 293318.Google Scholar
Bingen, B, Griffin, W. L., Torsvik, T. H. & Saeed, A. 2005. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17, 250–8.Google Scholar
Blaxland, A. B., van Breemen, O., Emeleus, C. H. & Anderson, J. G. 1978. Age and origin of the major syenite centres in the Gardar Province of South Greenland: Rb–Sr studies. Geological Society of America Bulletin 89, 231–44.Google Scholar
Blichert-Toft, J., Albarède, F., Rosing, M., Frei, R. & Bridgwater, D. 1999. The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochimica et Cosmochimica Acta 63, 3901–14.CrossRefGoogle Scholar
Blichert-Toft, J., Rosing, M., Lesher, C. E. & Chauvel, C. 1995. Geochemical constraints on the origin of the Late Archean Skjoldungen alkaline igneous province, SE Greenland. Journal of Petrology 36, 315–61.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial plants. Earth and Planetary Science Letters 273, 4857.CrossRefGoogle Scholar
Brown, P. E., Dempster, T. J., Hutton, D. H. W. & Becker, S. M. 2003. Extensional tectonics and mafic plutons in the Ketilidian rapakivi granite suite of South Greenland. Lithos 67, 113.Google Scholar
Condie, K. C. 2005. Earth as an Evolving Planetary System. Amsterdam: Elsevier, 447 pp.Google Scholar
Condie, K. C., Bickford, M. E., Aster, R. C., Belousova, E. A., Scholl, D. W. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of America Bulletin 123, 951–7.CrossRefGoogle Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 469500. Reviews in Mineralogy and Geochemistry 53 .Google Scholar
Coulson, I. M., Goodenough, K. M., Pearce, N. J. G. & Leng, M. J. 2003. Carbonatites and lamprophyres of the Gardar Province – a “window” to the sub-Gardar mantle? Mineralogical Magazine 67, 855–72.Google Scholar
DePaolo, D. J. 1985. Isotopic studies of processes in mafic magma chambers: I. The Kiglapait Intrusion, Labrador. Journal of Petrology 26, 925–51.Google Scholar
Emeleus, C. H. & Harry, W. T. 1970. The Igaliko nepheline syenite complex. General description. Bulletin Grønlands Geologiske Undersøgelse 85, 115 pp.Google Scholar
Emeleus, C. H. & Upton, B. G. J. 1976. The Gardar period in South Greenland. In Geology of Greenland (eds Escher, A. & Watt, W. S.), pp. 152–81. Copenhagen: Grønlands Geologiske Undersøgelse.Google Scholar
Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2003. Detrital zircon analysis of the sedimentary record. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 277303. Reviews in Mineralogy and Geochemistry 53.CrossRefGoogle Scholar
Garde, A. A., Hamilton, M. A., Chadwick, B., Grocott, J. & McCaffrey, K. J. W. 2002. The Ketilidian orogen of South Greenland: geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Canadian Journal of Earth Science 39, 765–93.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Halama, R., Marks, M., Bügmann, G., Siebel, W., Wenzel, T. & Markl, G. 2003. Crustal contamination of mafic magmas: evidence from a petrological, geochemical and Sr–Nd–Os–O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland. Lithos 74, 199232.Google Scholar
Hanmer, S., Corrigan, D., Pehrsson, S., & Nadeau, L. 2000. SW Grenville Province, Canada: the case against post-1.4 Ga accretionary tectonics. Tectonophysics 319, 3351.Google Scholar
Hawkesworth, C. J. & Kemp, A. I. S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 76, 144–62.Google Scholar
Heilimo, E., Halla, J., Andersen, T., Huhma, H. 2012. Neoarchean crustal recycling and mantle metasomatism: Hf–Nd–Pb–O isotope evidence from sanukitoids of the Fennoscandian shield. Precambrian Research, published online 2 February 2012. doi:10.1016/j.precamres.2012.01.015.Google Scholar
Heinonen, A. P., Andersen, T. & Rämö, O. T. 2010. Re-evaluation of rapakivi petrogenesis: source constraints from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland. Journal of Petrology 51, 1687–709.Google Scholar
Henriksen, N., Higgins, A. K., Kalsbeek, F. & Pulvertaft, T. C. R. 2000. Greenland from Archaean to Quaternary. Descriptive text to the Geological map of Greenland 1:2 500 000. Geology of Greenland Survey Bulletin 185, 93 pp.Google Scholar
Hölttä, P., Bagansky, V., Garde, A. A., Mertanen, S., Peltonen, P., Slabunov, A., Sorjonen-Ward, P. & Whitehouse, M. 2008. Archean of Greenland and Fennoscandia. Episodes 31, 1319.CrossRefGoogle Scholar
Kalsbeek, F., Larsen, L. M. & Bondam, J. 1990. Geological map of Greenland, 1:500 000, Sydgrønland, sheet 1. Descriptive text. Copenhagen: Grønlands Geologiske Undersøgelse.Google Scholar
Kalsbeek, F., Pidgeon, R. T. & Taylor, P. N. 1987. Nagssugtoqidian mobile belt of West Greenland: a cryptic 1850 Ma suture between two Archaean continents – chemical and isotopic evidence. Earth and Planetary Science Letters 85, 365–85.Google Scholar
Kalsbeek, F. & Taylor, P. N. 1985. Isotopic and chemical variation in granites across a Proterozoic continental margin – the Ketilidian mobile belt of South Greenland. Earth and Planetary Science Letters 73, 6580.Google Scholar
Karlstrom, K. E., Åhäll, K.-I., Harlan, S. S., Williams, M. L., McLelland, J. & Geissman, J. W. 2001. Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research 111, 530.Google Scholar
Knudsen, T.-L., Andersen, T., Whitehouse, M. J. & Vestin, J. 1997. Detrital zircon ages from southern Norway – implications for the Proterozoic evolution of the southwestern Baltic Shield. Contributions to Mineralogy and Petrology 130, 4758.Google Scholar
Kurhila, M., Andersen, T. & Rämö, O. T. 2010. Diverse sources of crustal granitic magma: Lu-Hf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland. Lithos 115, 263–71.Google Scholar
Lahtinen, R., Garde, A. A. & Melezhik, V. A. 2008. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31, 20–8.Google Scholar
Lahtinen, R., Huhma, H. & Kousa, J. 2002. Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U–Pb, Sm–Nd and geochemical data. Precambrian Research 116, 81109.Google Scholar
Lancaster, P. J, Storey, C. D., Hawkesworth, C. J. & Dhuime, B. 2011. Understanding the roles of crustal growth and preservation in the detrital zircon record. Earth and Planetary Science Letters 305, 405–12.CrossRefGoogle Scholar
Lauri, L. S., Andersen, T., Hölttä, P., Huhma, H. & Graham, S. 2011. Evolution of the Archaean Karelian province in the Fennoscandian Shield in the light of U-Pb zircon ages and Sm-Nd and Lu-Hf isotope systematics. Journal of the Geological Society, London 168, 201–18.Google Scholar
Liu, Y. S., Ju, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J. & Chen, H. H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by La-ICP-MS. Chinese Science Bulletin 55, 1535–46.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot/Excel 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 70 pp.Google Scholar
McCreath, J. A., Finch, A. A., Simonsen, S. L., Donaldson, C. H., Armour-Brown, A. 2012. Independent ages of magmatic and hydrothermal activity in alkaline igneous rocks: the Motzfeldt Centre, Gardar Province, South Greenland. Contributions to Mineralogy and Petrology 163, 967–82.Google Scholar
McDonough, W. F. & Sun, S.-S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
McLelland, J. M., Selleck, B. W. & Bickford, M. E. 2010. Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. Geological Society of America Memoir 206, 129.Google Scholar
Paslick, C. R., Halliday, A. N., Davies, G. R., Mezger, K. & Upton, B. G. J. 1993. Timing of Proterozoic magmatism in the Gardar Province, southern Greenland. Geological Society of America Bulletin 105, 272–8.Google Scholar
Patchett, P. J. & Bridgwater, D. 1984. Origin of continental crust of 1.9–1.7 Ga age by Nd isotopes in the Ketilidian terrain of South Greenland. Contributions to Mineralogy and Petrology 87, 311–18.Google Scholar
Patchett, P. J., Kouvo, O., Hedge, C. E. & Tatsumoto, M. 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology 78, 279–97.Google Scholar
Pedersen, S., Andersen, T., Konnerup-Madsen, J. & Griffin, W. L. 2009. Recurrent Mesoproterozoic continental magmatism, sedimentation and metamorphism in South-Central Norway. International Journal of Earth Sciences 98, 1151–71.Google Scholar
Poulsen, W. 1964. The sandstones of the Precambrian Eriksfjord Formation in South Greenland. Rapport Grønlands Geologiske Undersøgelse 2, 16 pp.Google Scholar
Rosa, D. R. N., Finch, A. A., Andersen, T. & Inverno, C. M. C. 2009. U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineralogy and Petrology 95, 4769.Google Scholar
Røhr, T. S., Andersen, T. & Dypvik, H. 2008. Provenance of Lower Cretaceous sediments in the Wandel Sea Basin, North Greenland. Journal of the Geological Society, London 165, 755–67.Google Scholar
Røhr, T. S., Andersen, T., Dypvik, H. & Embry, A. F. 2010. Detrital zircon characteristics of the Lower Cretaceous Isachsen Formation, Sverdrup Basin; source constraints from age and Hf isotope data. Canadian Journal of Earth Science 47, 255–71.CrossRefGoogle Scholar
Sircombe, K. N. & Stern, R. A. 2002. An investigation of artificial biasing in detrital zircon U–Pb geochronology due to magnetic separation in sample preparation. Geochimica et Cosmochimica Acta 66, 2379–97.CrossRefGoogle Scholar
Slama, J., Walderhaug, O., Fonneland, H., Kosler, J., Pedersen, R. B. 2011. Provenance of Neoproterozoic to Upper Cretaceous sedimentary rocks, eastern Greenland: implications for recognizing the sources of sediments in the Norwegian Sea. Sedimentary Geology 238, 254–67.Google Scholar
Söderlund, U., Patchett, J. P., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Stewart, J. W. 1970. Precambrian alkaline ultramafic/carbonatite volcanism at Qagssiarssuk, South Greenland. Bulletin Grønlands Geologiske Undersøgelse 84 (also Meddelser om Grønland 186 (4)), 70 pp.Google Scholar
Szilas, K., Hoffman, J. E., Scherstén, A., Rosing, M. T., Windley, B. F., Kokfelt, T., Keulen, N., van Hinsberg, V. J., Næraa, T., Frei, R. & Münker, C. 2012 a. Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshåb Isblink, southern West Greenland: implications for subduction zone processes in the early Earth. Precambrian Research 208–211, 90123.Google Scholar
Szilas, K., Næraa, T., Scherstén, A., Stendal, H., Frei, R., van Hinsberg, V. J., Kokfelt, T. F. & Rosing, M. T. 2012 b. Origin of Mesoarchaean arc-related rocks with boninite/komatiite affinities from southern West Greenland. Lithos 144–145, 2439.Google Scholar
Upton, B. G. J., Emeleus, L. M., Heaman, C. H., Goodenough, K. M. & Finch, A. A. 2003. Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68, 4365.Google Scholar
van Breemen, O., Aftalion, M. & Allaart, J. H. 1974. Isotopic and geochronologic studies on granites from the Ketilidian Mobile Belt of South Greenland. Geological Society of America Bulletin 85, 403–12.Google Scholar
van Gool, A. M., Connelly, J. N., Marker, M. & Mengel, F. 2002. The Nagssugtoqidian Orogen of West Greenland: tectonic evolution and regional correlations from a West Greenland perspective. Canadian Journal of Earth Science 39, 665–86.Google Scholar
Veevers, J. J., Belousova, E. A., Saeed, A., Sircombe, K., Cooper, A. F. & Read, S. E. 2006. Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth-Science Reviews 76, 35174 Google Scholar
Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters 224, 441–51.Google Scholar
Vervoort, J. D. & Blichert-Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63, 533–56.Google Scholar
Vervoort, J. D. & Patchett, P. J. 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717–33.Google Scholar
Voice, P. J., Kowalewski, M. & Eriksson, K. A. 2011. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. Journal of Geology 119, 109–26.Google Scholar
Whitehouse, M. J., Kalsbeek, F. & Nutman, A. P. 1998. Crustal growth and crustal recycling in the Nagssugtoqidian orogen of West Greenland: constraints from radiogenic isotope systematics and U–Pb zircon geochronology. Precambrian Research 91, 365–81.Google Scholar
Williams, I. E. 2001. Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences 48, 557–80.Google Scholar
Willner, A. P., Sindern, S., Metzger, K., Ermolaeva, T., Kramm, U., Puchkov, V. & Kronz, A. 2003. Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): early time marks at the eastern margin of Baltica. Precambrian Research 124, 129.CrossRefGoogle Scholar
Zhao, G., Sun, M., Wilde, S. A. & Li, S. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91123.Google Scholar
Supplementary material: File

Andersen Supplementary Material

Appendix

Download Andersen Supplementary Material(File)
File 162.8 KB