Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:28:08.532Z Has data issue: false hasContentIssue false

Alluvial fan, braided river and shallow-marine turbidity current deposits in the Port Lazo and Roche Jagu formations, Northern Brittany: relationships to andesite emplacements and implications for age of the Plourivo-Plouézec Group

Published online by Cambridge University Press:  03 August 2016

DAVID J. WENT*
Affiliation:
Ostralegus Ventures Ltd., Silver Birches, Fox Hill Village, Haywards Heath, RH16 4QZ
*
*Author for correspondence: david.dwent@talktalk.net

Abstract

Facies and stratigraphic analysis of the Port Lazo and Roche Jagu formations, together the lower part of the Plourivo-Plouézec Group, suggests deposition in three distinct depositional systems. The lower part of the Port Lazo Formation comprises red conglomerate, sandstone and shale of alluvial fan to alluvial plain origin. A conformable interval of grey sandstone and shale succeeds the lower Port Lazo red beds and records a period of subtidal sedimentation dominated by river-fed, shallow-water turbidity currents (hyperpycnites). The succeeding Roche Jagu Formation comprises red sandstones and shales of braided fluvial origin. It is intercalated with, and succeeded by, andesites. The andesites succeeding the fluvial strata overlie a prominent erosion surface and are lava flows, whereas those intercalated with the fluvial strata are intrusions. Rb–Sr radiometric dating of the andesites at 472+/−5 Ma is commonly used as evidence for the whole Plourivo-Plouézec Group being Early Ordovician in age. However, the stratigraphic relationships and patterns of sedimentation in the Port Lazo and Roche Jagu formations, together with the localized presence of Arumberia, suggest they are most likely of early Cambrian age and related to a phase of post-Cadomian rifting. The facies deposited show both similarities to and differences from neighbouring strata of equivalent age, and highlight the control exerted by sediment load on alluvial and nearshore processes on early Palaeozoic environments.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1968. Current Ripples. Amsterdam: North Holland, 433 pp.Google Scholar
Allen, J. R. L. 1984. Sedimentary Structures, their Character and Physical Basis. Amsterdam: Elsevier, Developments in Sedimentology no. 30.Google Scholar
Auvray, B., Mace, J., Vidal, P. & Van Der Voo, R. 1980. Rb-Sr dating of the Plouézec volcanics, northern Brittany: implications for the age of red beds (series rouges) in the northern Armorican massif. Journal of the Geological Society, London 137, 207–10.Google Scholar
Blair, T. C. 1987. Sedimentary processes, vertical stratification sequences and geomorphology of the Roaring River Fan, Rocky Mountain National Park, Colorado. Journal of Sedimentary Petrology 57, 118.Google Scholar
Blair, T. C. 1999. Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46, 913–40.CrossRefGoogle Scholar
Blair, T. C. & McPherson, J. G. 1998. Recent debris-flow processes and resultant form and facies of the Dolomite alluvial fan, Owens Valley, California. Journal of Sedimentary Research 68, 800–18.Google Scholar
Bland, B. H. 1984. Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian–Cambrian boundary. Geological Magazine 121, 625–33.Google Scholar
Bonjour, J. L., Peucat, J. J., Chauvel, J. J., Paris, F. & Cornichet, J. 1988. U–Pb zircon dating of the early Palaeozoic transgression in Western Brittany (France): a new constraint for the lower Palaeozoic time-scale. Chemical Geology 72, 329–36.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphical Approach to Facies Classification. Amsterdam: Elsevier, 169 pp.Google Scholar
Brasier, M. D. 1980. The Lower Cambrian Transgression and glauconite-phosphate facies in western Europe. Journal of Geological Society, London 137, 695703.Google Scholar
Bridge, J. S. & Lunt, I. A. 2006. Depositional models of braided rivers. In Braided Rivers, Processes, Deposits, Ecology and Management (eds Sambrook, G. H., Best, J. L., Bristow, C. S. and Petts, G. E.), pp. 1150. International Association of Sedimentologists, Special Publication no. 36.CrossRefGoogle Scholar
Bridge, J. S. & Tye, R. S. 2000. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores. AAPG bulletin 84, 1205–28.Google Scholar
Briggs, S. E., Davies, R. J., Cartwright, J. A. & Morgan, R. 2006. Multiple detachment levels and their control on fold styles in the compressional domain of the deepwater west Niger Delta. Basin Research 18, 435–50.CrossRefGoogle Scholar
Brown, M., Power, G. M., Topley, C. G. & D'lemos, R. S. 1990. Cadomian magmatism in the North Armorican Massif. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), pp. 181213. Geological Society of London, Special Publication no. 51.Google Scholar
Brun, J. P. & Balé, P. 1990. Cadomian tectonics in northern Brittany. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), pp. 95114. Geological Society of London, Special Publication no. 51.Google Scholar
Burgess, P. M. & Hovius, N. 1998. Rates of delta progradation during highstands: consequences for timing of deposition in deep-marine systems. Journal of the Geological Society 155, 217–22.CrossRefGoogle Scholar
Cant, D. J. & Walker, R. G. 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25, 625–48.Google Scholar
Collinson, J. D. 1996. Alluvial sediments. In Sedimentary Environments: Processes, Facies and Stratigraphy, third edition (ed. Reading, H. G.), pp. 3782. Oxford: Blackwell.Google Scholar
Costa, J. E. 1988. Rheologic, geomorphic and sedimentologic differentiation of waterfloods, hyperconcentrated flows and debris flows. In Flood Geomorphology (eds Baker, V. R., Kochel, R. C. & Patton, P. C.), pp. 113–22. New York: Wiley.Google Scholar
Cotter, E. 1978. The evolution of fluvial style, with special reference to the central Appalachian Palaeozoic. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 361–84. Canadian Society of Petroleum Geology, Memoir no. 5.Google Scholar
Dalrymple, R. W., Zaitlin, B. A. & Boyd, R. 1992. Estuarine facies models: conceptual basis and stratigraphic implications: perspective. Journal of Sedimentary Research 62, 1130–46.Google Scholar
Damuth, J. E. 1994. Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology 11, 320–46.Google Scholar
Davies, N. S. & Gibling, M. R. 2010. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Science Reviews 98, 171200.Google Scholar
Davies, N. S., Gibling, M. R. & Rygel, M. C. 2011. Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58, 220–58.CrossRefGoogle Scholar
Davies, N. S., Lui, A. G., Gibling, M. R. & Miller, R. F. 2016. Resolving MISS conceptions and misconceptions: a geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews 154, 210–46.CrossRefGoogle Scholar
D'Lemos, R., Strachan, R. A. & Topley, C. G. 1990. The Cadomian orogeny in the North Armorican Massif: a brief review. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), 312. Geological Society of London, Special Publication no. 51.Google Scholar
Doré, F. 1972. La transgression majeure du Paleozoique inferieur dans le nord-est du massif Armoricain. Bulletin de la Société Géologique de France 14, 7993.Google Scholar
Doré, F. 1994. Cambrian of the Armorican Massif. In Pre-Mezozoic Geology in France and Related Areas (eds Chantraine, J., Rolet, J., Santallier, D., Piqué, A. & Kleppie, J.), pp. 136–41. Berlin, Heidelberg: Springer-Verlag, IGCP-Project 233.Google Scholar
Doré, F., Juignet, P., Larsonneur, C., Pareyn, C. & Rioult, M. 1977. Le Briovérien et le Paléozoique de Normandie. Paris: Masson, Guides Géologigiques Régionaux, Normandie, pp. 1017.Google Scholar
Egal, E., Le Goff, E., Guennoc, P., Lebret, P., Thiéblemont, D., Hallégouët, B., Houlgatte, E., Callier, L. & Carn, A. 1995. Notice explicative de la feuille Pontrieux - Etables sur Mer. Carte géologiques de la France a 1:50000. Editions du BRGM, Service Géologique National.Google Scholar
Gapais, D. & Balé, P. 1990. Shear zone pattern and granite emplacement within a Cadomian sinistral wrench zone at St Cast, N. Brittany. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), pp. 169–79. Geological Society of London, Special Publication no. 51.Google Scholar
Glaessner, M. F. & Walter, M. R. 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa 1, 5969.Google Scholar
Guy, H. P., Simons, D. B. & Richardson, E. V. 1966. Summary of alluvial channel data from flume experiments, 1956–61. US Geological Survey, Professional Paper 462I, 196.Google Scholar
Hardie, L. A., Smoot, J. P. & Eugster, H. P. 1978. Saline lakes and their deposits: a sedimentological approach. In Modern and Ancient Lake Sediments (eds Matter, A. & Tucker, M. E.), pp. 84115. International Association of Sedimentologists, Special Publication no. 12.Google Scholar
Harms, J. C., Southard, J. B., Spearing, D. R. & Walker, R. G. 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Society of Economic Paleontologists and Mineralogists Short Course 2, 161 p. Geological Survey Geologic Quadrangle Map, GQ-228. Paleozoic passive margin. Journal of Sedimentary Petrology 54, 557–62.Google Scholar
Heward, A. P. 1978. Alluvial fan sequence and megasequence models: with examples from the Westphalian D-Stephanian B coal fields, northern Spain. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 669702. Canadian Society of Petroleum Geologists, Memoir no. 5.Google Scholar
Hubert, J. F. & Hyde, M. G. 1982. Sheet-flow deposits of graded beds and sandstone on an alluvial fan sandflat-playa system, Upper Triassic Blomidon red beds, St Marys Bay, Nova Scotia. Sedimentology 29, 457–74.CrossRefGoogle Scholar
Ielpi, A. & Ghinassi, M. 2015. Planview style and palaeodrainage of Torridonian channel belts: Applecross Formation, Stoer Peninsula, Scotland. Sedimentary Geology 325, 116.CrossRefGoogle Scholar
Jackson, A. L., Larsen, E., Hanslien, S. & Tjensland, A. E. 2011. Controls on synrift turbidte deposition on the hangingwall of the South Viking Graben, North Sea rift systems, Offshore Norway. AAPG Bulletin 95, 1557–87.CrossRefGoogle Scholar
Kneller, B. C. & Branney, M. J. 1995. Sustained high density turbidity currents and the deposition of thick massive sands. Sedimentology 42, 607–16.CrossRefGoogle Scholar
Kocurek, G. & Fielder, G. 1982. Adhesion structures. Journal of Sedimentary Research 52, 1229–41.Google Scholar
Kolesnikov, A. V., Grazhdankin, D. V. & Maslov, A. V. 2012. Arumberia-type structures in the Upper Vendian of the Urals. Doklady Earth Sciences 447, 1233–9.Google Scholar
Kumar, S. & Pandey, S. K. 2009. Note on the occurrence of Arumberia banksi and associated fossils from the Jodhpur Sandstone, Marwar Supergroup, Western Rajasthan. Journal of the Palaeontological Society of India 54, 171.Google Scholar
Lowe, D. R. 1979. Sediment gravity flows: their classification and some problems of application to natural flows and deposits. In Geology of Continental Slopes (eds Doyle, N. J. & Pilkey, O. H.), pp. 7982. SEPM Special Publication no. 27.Google Scholar
Lowe, D. R. 1982. Sediment gravity flows II. Depositional models with special reference to high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
McIlroy, D. & Walter, M. R. 1997. A reconsideration of the biogenicity of Arumberia banksi Glaessner & Walter. Alcheringa 21, 7980.Google Scholar
Morgan, R. 2003. Prospectivity in ultradeep water: the case for petroleum generation and migration within the outer parts of the Niger Delta apron. In Petroleum Geology of Africa. New Themes and Developing Technologies (eds Arthur, T. J., MacGregor, D. S. & Cameron, N. R.), pp. 151–64. Geological Society of London, Special Publication no. 207.Google Scholar
Mulder, T. & Cochonat, P. 1996. Classification of offshore mass movements. Journal of Sedimentary Research 66, 4357.Google Scholar
Mulder, T., Syvitski, J. P., Migeon, S., Faugeres, J. C. & Savoye, B. 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology 20, 861–82.CrossRefGoogle Scholar
Mutti, E., Tinterri, R., Magalhaes, P. M. & Basta, G. 2007. Deep-water turbidites and their equally important shallower water cousins. In AAPG Annual Convention, Long Beach. Tulsa: AAPG.Google Scholar
Nelson, C. H. 1982. Modern shallow-water graded sand layers from storm surges, Bering Shelf: a mimic of Bouma sequences and turbidite systems. Journal of Sedimentary Research 52, 537–45.Google Scholar
Nemec, W. & Steel, R. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In Sedimentology of Gravels and Conglomerates (eds Koster, E. H. & Steel, R. J.), pp. 131. Canadian Society of Petroleum Geologists, Memoir no. 10.Google Scholar
Oomkens, E. 1966. Environmental significance of sand dykes. Sedimentology 7, 143–8.CrossRefGoogle Scholar
Peakall, J., Amos, K. J., Keevil, G. M., Bradbury, P. W. & Gupta, S. 2007. Flow processes and sedimentation in submarine channel bends. Marine and Petroleum Geology 24, 470–86.CrossRefGoogle Scholar
Peakall, J., McCaffrey, B. & Kneller, B. 2000. A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research 70, 434–48.Google Scholar
Peucat, J. J. 1986. Behaviour of Rb-Sr whole rock and U-Pb zircon systems during partial melting as shown in magmatic gneisses from the St. Malo massif, NE Brittany, France. Journal of the Geological Society, London 143, 875–85.Google Scholar
Plink-Björklund, P. & Steel, R. J. 2004. Initiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites. Sedimentary Geology 165, 2952.Google Scholar
Posamentier, H. W. & Kolla, V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research 73, 367–88.Google Scholar
Raaf, J. D., Boersma, J. R. & Gelder, A. V. 1977. Wave-generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 24, 451–83.CrossRefGoogle Scholar
Rabu, D., Chantraine, J., Chauvel, J. J., Denis, E., Balé, P. & Bardy, P. 1990. The Brioverian (upper proterozoic) and the Cadomian Orogeny in the Armorican Massif. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), pp. 8194. Geological Society, London, Special Publication no. 51.Google Scholar
Rahmani, R. A. 1988. Estuarine tidal channel and nearshore sedimentation of a Late Cretaceous epicontinental sea, Drumheller, Alberta, Canada. In Tide-Influenced Sedimentary Environments (eds Boer, P.L. & Van Gelder, A.), pp. 433–71. Dordrecht, Boston, Lancaster, Tokyo: D. Reidel Publishing Company.CrossRefGoogle Scholar
Reading, H. G. & Collinson, J. D. 1996. Clastic coasts. Sedimentary Environments: Processes, Facies and Stratigraphy (ed. Reading, H. G.), pp. 154231. Oxford: Blackwell.Google Scholar
Renouf, J. T. 1974. The Proterozoic and Palaeozoic development of the Armorican and Cornubian provinces. Proceeings of the Ussher Society 3, 643.Google Scholar
Robardet, M., Paris, F. & Racheboeuf, P. R. 1990. Palaeogeographic evolution of southwestern Europe during Early Palaeozoic times. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.), pp. 411–9. Geological Society of London, Memoir no. 12(1).Google Scholar
Samuel, A., Kneller, B., Raslan, S., Sharp, A. & Parsons, C. 2003. Prolific deep-marine slope channels of the Nile Delta, Egypt. AAPG Bulletin 87, 541–60.CrossRefGoogle Scholar
Santos, M. G. & Owen, G. 2016. Heterolithic meandering-channel deposits from the Neoproterozoic of NW Scotland: Implications for palaeogeographic reconstructions of Precambrian sedimentary environments. Precambrian Research, 272, 226–43.Google Scholar
Sharp, R. P. & Nobles, L. H. 1953. Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin 64, 547–60.Google Scholar
Smith, N. D. 1971. Pseudo-planar stratification produced by very low amplitude sand waves. Journal of Sedimentary Research 41, 6973.Google Scholar
Smith, N. D. 1972. Some sedimentological aspects of planar cross-stratification in a sandy braided river. Journal of Sedimentary Research 42, 624–43.Google Scholar
Stewart, D. J. 1983. Possible suspended-load channel deposits from the Wealden Group (Lower Cretaceous) of Southern England. Modern and Ancient Fluvial Systems (eds Collinson, J. D. & Lewin, J.), pp. 369384. International Association of Sedimentologists, Special Publication no. 6.Google Scholar
Suire, P., Dabard, M.-P. & Chauvel, J. J. 1991. Novelles données sur les series rouges nord Armoricain: étude du basin ordovicien du Bréhec. Comptes Rendus Académie Sciences 312 (II), 721–7.Google Scholar
Thomas, R. G., Smith, D. G., Wood, J. M., Visser, J., Calverley-Range, E. A. & Koster, E. H. 1987. Inclined heterolithic stratification: terminology, description, interpretation and significance. Sedimentary Geology 53, 123–79.Google Scholar
Todd, S. P. & Went, D. J. 1991. Lateral migration of sand-bed rivers; examples from the Devonian Glashabeg Formation, SW Ireland and the Cambrian Alderney Sandstone Formation, Channel Islands. Sedimentology 38, 9971020.Google Scholar
Treloar, P. J. & Strachan, R. A. 1990. Cadomian strike-slip tectonics in NE Brittany. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), pp. 151–68. Geological Society, London, Special Publication no. 51.Google Scholar
Tunbridge, I. P. 1984. Facies model for a sandy ephemeral stream and clay playa complex: the Middle Devonian Trentishoe Formation of North Devon, U.K. Sedimentology 31, 697715.CrossRefGoogle Scholar
Visser, M. J. 1980. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8, 543–46.Google Scholar
Went, D. J. 1991. Basement weathering at the Lower Palaeozoic unconformity in the Channel Islands and northern Brittany. Proceedings of the Ussher Society 7, 396401.Google Scholar
Went, D. J. 2005. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology 52, 693713.Google Scholar
Went, D. J. 2013. Quartzite development in early Palaeozoic nearshore marine environments. Sedimentology 60, 1036–58.Google Scholar
Went, D. J. & Andrews, M. J. 1990. Post-Cadomian erosion, deposition and basin development in the Channel Islands and northern Brittany. In The Cadomian Orogeny (eds D'Lemos, R. S., Strachan, R. A. & Topley, C. G.), pp. 293304. Geological Society of London, Special Publications no. 51.Google Scholar
Went, D. J. & Andrews, M. J. 1991. Alluvial fan, braided stream and possible marine shoreface deposits of the Lower Palaeozoic Erquy-Frehel Group, northern Brittany. Proceedings of the Ussher Society 7, 385–91.Google Scholar
Went, D. J., Andrews, M. J. & Williams, B. P. J. 1988. Processes of alluvial fan sedimentation, basal Rozel Conglomerate Formation, La Tête des Hougues, Jersey, Channel Islands. Geological Journal 23, 7584.Google Scholar
Yalin, M. S. 1964. Geometrical properties of sand wave. Journal of the Hydraulics Division 90 (5), 105–19.Google Scholar