Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T05:08:12.967Z Has data issue: false hasContentIssue false

An Eocene anchovy from Monte Bolca, Italy: The earliest known record for the family Engraulidae

Published online by Cambridge University Press:  15 June 2015

GIUSEPPE MARRAMÀ
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 I-10125 Torino, Italy
GIORGIO CARNEVALE*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 I-10125 Torino, Italy
*
*Author for correspondence: giorgio.carnevale@unito.it

Abstract

Engraulids, also known as anchovies, are a distinctive group of clupeoid fishes characterized by a series of derived morphological features of the snout and infraorbital bones, suspensorium and branchial arches. Although anchovies are very abundant today, they are scarcely represented in the fossil record. A new genus and species of anchovy, †Eoengraulis fasoloi gen. et sp. nov., is described from the Eocene (late Ypresian, c. 50 Ma) locality of Monte Bolca, Italy. It is based on a single well-preserved articulated skeleton that exhibits a unique combination of characters that supports its recognition as a new genus of the family Engraulidae, including: nine branchiostegal rays; 40 preural vertebrae and 17 pairs of pleural ribs; pleural ribs – preural vertebrae ratio 0.42; seven supraneurals; dorsal-fin origin at about mid-length of the body; about 16 dorsal-fin rays; anal-fin origin slightly behind the base of the last dorsal-fin ray; 19 anal-fin rays; seven pelvic-fin rays; and small needle-like pre-pelvic scutes. The morphological structure of the single available specimen suggests that †Eoengraulis fasoloi is the sister taxon of all other engrauline taxa. †Eoengraulis fasoloi is the oldest member of the family Engraulidae known to date. This taxon suggests that the earliest phases of diversification of engrauline anchovies probably occurred in the coastal palaeobiotopes of the western Tethys during Eocene time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. R., Midgley, S. H. & Allen, M. 2002. Field Guide to the Freshwater Fishes of Australia. Perth: Western Australian Museum, 394 pp.Google Scholar
Bannikov, A. F. 2014. The systematic composition of the Eocene actinopterygian fish fauna from Monte Bolca, northern Italy, as known to date. Studi e Ricerche sui Giacimenti Terziari di Bolca 15, 2334.Google Scholar
Barbieri, G. & Medizza, F. 1969. Contributo alla conoscenza geologica della regione di Bolca (Monti Lessini). Memorie degli Istituti di Geologia e Mineralogia dell'Università di Padova 27, 136.Google Scholar
Bloom, D. B. & Lovejoy, N. R. 2012. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). Journal of Evolutionary Biology 25, 710–15.CrossRefGoogle ScholarPubMed
Bloom, D. B. & Lovejoy, N. R. 2014. The evolutionary origins of diadromy inferred from a time-calibrated phylogeny of Clupeiformes (herring and allies). Proceedings of the Royal Society B 281 (1778), 2013–81.Google Scholar
Carnevale, G., Bannikov, A. F., Marramà, G., Tyler, J. C. & Zorzin, R. 2014. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates. In The Bolca Fossil-Lagerstätte: A Window into the Eocene World (eds Papazzoni, C. A., Giusberti, L., Carnevale, G., Roghi, G., Bassi, D. & Zorzin, R.), pp. 3763. Rendiconti della Società Paleontologica Italiana, 4.Google Scholar
Carnevale, G., Landini, W., Ragaini, L., Cantalamessa, G. & Di Celma, C. 2011. Taphonomic and paleoecological analyses (mollusks and fishes) of the Súa Member condensed shellbed, Upper Onzole Formation (Early Pliocene, Ecuador). Palaios 26, 160–72.Google Scholar
Chapman, W. M. 1944. The osteology of the Pacific deep-bodied anchovy, Anchoa compressa . Journal of Morphology 74, 311–29.Google Scholar
Cortese, G., Gersonde, R., Hillenbrand, C. -D. & Kuhn, G. 2004. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters 224, 509–27.Google Scholar
Da Silva, A. C. G., Severi, W. & De Castro, M. F. 2010. Morphological development of Anchoviella vaillanti (Steindachner, 1908) (Clupeiformes: Engraulidae) larvae and juveniles. Neotropical Ichthyology 8, 805–12.Google Scholar
Dal Degan, D. & Barbieri, S. 2005. Rilievo geologico dell'area di Bolca (Monti Lessini orientali). Bollettino del Museo Civico di Storia Naturale di Verona 27, 310.Google Scholar
David, L. R. 1943. Miocene fishes of southern California. Special Papers of the Geological Society of America 43, 1193.Google Scholar
Di Dario, F. 2002. Evidence supporting a sister-group relationship between Clupeoidea and Engrauloidea (Clupeomorpha). Copeia 2002, 496503.Google Scholar
Di Dario, F. 2009. Chirocentrids as engrauloids: evidence from suspensorium, branchial arches, and infraorbital bones (Clupeomorpha, Teleostei). Zoological Journal of the Linnean Society 156, 363–83.Google Scholar
Fabiani, R. 1914. La serie stratigrafica del Monte Bolca e dei suoi dintorni. Memorie dell'Istituto Geologico della Regia Università di Padova 2, 223–35.Google Scholar
FAO. 2013. Fishery and Aquaculture Statistics 2011. Roma: FAO, 76 pp.Google Scholar
Figuerido, F. J. De. 2009. A new marine clupeoid fish from the Lower Cretaceous of the Sergipe-Alagoas Basin, northeastern Brazil. Zootaxa 2164, 2132.Google Scholar
Fitch, J. E. 1966. Additional fish remains, mostly otoliths, from a Pleistocene deposit at Playa del Rey, California. Los Angeles County Museum, Contributions in Science 119, 116.Google Scholar
Fitch, J. E. 1967. The marine fish fauna based primarily on otoliths, of a lower Pleistocene deposit at San Pedro, California (LACMIP 332, San Pedro sand). Los Angeles County Museum, Contributions in Science 128, 123.Google Scholar
Gill, T. N. 1861. Synopsis of the subfamily Clupeinae, with descriptions of new genera. Proceedings of the Academy of Natural Sciences of Philadelphia 13, 33–8.Google Scholar
Grande, L. 1985. Recent and fossil clupeomorph fishes with materials for revision of the subgroups of cluepoids. Bulletin of the American Museum of Natural History 181, 231372.Google Scholar
Grande, L. & Nelson, G. 1985. Interrelationships of fossil and recent anchovies (Teleostei: Engrauloidea) and description of a new species from the Miocene of Cyprus. American Museum Novitates 2826, 116.Google Scholar
Greenwood, P. H., Rosen, D. E., Weitzman, S. H. & Myers, G. S. 1966. Phyletic studies of the teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History 131, 339456.Google Scholar
Heß, M., Melzer, R. R., Eser, R. & Smola, U. 2006. The structure of the anchovy outer retinae (Engraulididae, Clupeiformes) – A comparative light- and electron-microscope study using museum-stored material. Journal of Morphology 267, 1356–80.Google Scholar
Jordan, D. S. & Seale, A. 1926. Review of the Engraulidae, with descriptions of new or rare species. Bulletin of the Museum Comparative Zoology 67, 355418.Google Scholar
Kottelat, M. 2013. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. The Raffles Bulletin of Zoology Supplement 27, 1663.Google Scholar
Landini, W., Bianucci, G., Carnevale, G., Ragaini, L., Sorbini, C., Valleri, G., Bisconti, M., Cantalamessa, G. & Di Celma, C. 2002. Late Pliocene fossils of Ecuador and the evolution of the Panamic Bioprovince after closure of the Central American Isthmus. Canadian Journal of Earth Sciences 39, 2741.CrossRefGoogle Scholar
Landini, W., Carnevale, G. & Sorbini, C. 2002. Biogeographical significance of northern extraprovincial fishes in the Pliocene of Ecuador. Geobios 24, 120–9.Google Scholar
Landini, W. & Menesini, E. 1978. L'ittiofauna plio-pleistocenica della sezione della Vrica (Crotone-Calabria). Bollettino della Società Paleontologica Italiana 17, 143–75.Google Scholar
Landini, W. & Sorbini, L. 1996. Ecological and trophic relationships of Eocene Monte Bolca (Pesciara) fish fauna. In Autoecology of Selected Fossil Organisms: Achievements and Problems (ed. Cherchi, A.), pp. 105–12. Bollettino della Società Paleontologica Italiana, Special Volume 3.Google Scholar
Lavoué, S., Konstantinidis, P. & Chen, W. -J. 2014. Progress in Clupeiform Systematics. In Biology and Ecology of Sardines and Anchovies (ed. Ganias, K.), pp. 342. Boca Raton: CRC Press.Google Scholar
Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. -J. & Nishida, M. 2013. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8, e56485.CrossRefGoogle ScholarPubMed
Lavoué, S., Miya, M. & Nishida, M. 2010. Mitochondrial phylogenomics of anchovies (family Engraulidae) and recurrent origins of pronounced miniaturization in the order Clupeiformes. Molecular Phylogenetics and Evolution 56, 480–5.Google Scholar
Lavoué, S., Miya, M., Saitoh, K., Ishiguro, N. B. & Nishida, M. 2007. Phylogenetic relationships among anchovies, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequenze. Molecular Phylogenetics and Evolution 43, 1096–105.Google Scholar
Li, C. & Orti, G. 2007. Molecular phylogeny of Clupeiformes inferred from nuclear and mitochondrial DNA sequenze. Molecular Phylogenetics and Evolution 44, 386–98.Google Scholar
Marramà, G. & Carnevale, G. 2015. Eocene round herring (Teleostei: Clupeidae) from Monte Bolca, Italy. Acta Palaeontologica Polonica, published online 03/2014. doi: 10.4202/app.00057.2014.Google Scholar
Marramà, G. & Carnevale, G. In press. The Eocene sardine †Bolcaichthys catopygopterus (Woodward, 1901) from Monte Bolca, Italy: osteology, taxonomy and paleobiology. Journal of Vertebrate Paleontology.Google Scholar
Miyashita, T. 2010. Unique occipital articulation with the first vertebra found in pristigasterids, chirocentrids, and clupeids (Teleostei: Clupeiformes: Clupeoidei). Ichthyological Research 57, 121–32.Google Scholar
Moona, J. C. 1960. Studies on the cranial osteology of Indian clupeoid fishes. II. The skull of Coilia dussumieri C. V. Agra University Journal of Research 9, 313–21.Google Scholar
Moona, J. C. 1968. Studies on the cranial osteology of Indian clupeoid fishes. III. Skull of Thrissocles purava (Ham.). Proceedings of the National Institute of Sciences of India. Series B. Biological Sciences 34, 227–43.Google Scholar
Nelson, G. 1970. The hyobranchial apparatus of teleostean fishes of the family Engraulidae and Chirocentridae. American Museum Novitates 2410, 130.Google Scholar
Nelson, G. 1983. Anchoa argentivittata, with notes on other eastern Pacific anchovies and the Indo-Pacific genus Encrasicholina . Copeia 1983, 4854.CrossRefGoogle Scholar
Nelson, G. 1984. Notes on the rostral organ of anchovies (Family Engraulidae). Japanese Journal of Ichthyology 31, 86–7.Google Scholar
Ohe, F. 1981. Fish-otoliths from the Dainichi Sand and the Hosoya tuffaceous members of the Pliocene Kakegawa Group, Shizuoka Prefecture, Central Japan. Bulletin of the Senior High School attached to the Aichi University of Education 8, 125–94.Google Scholar
Ohe, F. 1983. On the otoliths of deep water fishes from Pliocene Hijikata Mud Formation exposed in the southern part of Kakegawa Prefecture, Central Japan. Bulletin of the Senior High School attached to the Aichi University of Education 10, 154.Google Scholar
Papazzoni, C., Carnevale, G., Fornaciari, E., Giusberti, L. & Trevisani, E. 2014. The Pesciara-Monte Postale Fossil-Lagerstätte: 1. Biostratigraphy, sedimentology and depositional model. In The Bolca Fossil-Lagerstätte: A Window into the Eocene World (eds Papazzoni, C. A., Giusberti, L., Carnevale, G., Roghi, G., Bassi, D. & Zorzin, R.), pp. 2936. Rendiconti della Società Paleontologica Italiana, 4.Google Scholar
Papazzoni, C. & Trevisani, E. 2006. Facies analysis, paleoenvironmental reconstruction, and biostratigraphy of the “Pesciara di Bolca” (Verona, northern Italy): an Early Eocene Fossil-Lagerstätte . Palaeogeography, Palaeoclimatology, Palaeoecology 242, 2135.Google Scholar
Patterson, C. & Rosen, D. E. 1977. A review of ichthyodectiform and other Mesozoic teleost fishes, and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History 158, 81172.Google Scholar
Peng, Y. B. & Zhao, Z. R. 1988. A new genus and a new species of Chinese anchovies. Journal of Fisheries of China 12, 355–8.Google Scholar
Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., Lunt, P., Meyer, C. P., Monagle, L. B., Morley, R. J., O'Dea, A., Todd, J. A., Wesselingh, F. P., Wilson, M. E. J. & Pandolfi, J. M. 2008. Hopping hotspots: global shifts in marine biodiversity. Science 321, 654–7.CrossRefGoogle ScholarPubMed
Ridewood, W. G. 1904. On the cranial osteology of the clupeoid fishes. Proceedings of the Zoological Society of London 2, 448–93.Google Scholar
Roberts, T. R. 1978. An ichthyological survey of the Fly River in Papua, New Guinea, with descriptions of new species. Smithsonian Contribution to Zoology 281, 172.Google Scholar
Roberts, T. R. 1984. Amazonsprattus scintilla, new genus and species from the Rio Negro, Brazil, the smallest known clupeomorph fish. Proceedings of the California Academy of Sciences 43, 317–21.Google Scholar
Santini, F., Carnevale, G. & Sorenson, L. 2013. First molecular scombrid timetree (Percomorpha: Scombridae) shows recent radiation of tunas following invasion of pelagic habitat. Italian Journal of Zoology 80, 210–21.Google Scholar
Schwarzhans, W. 1980. Die tertiäre Teleosteer-Fauna Neuseelands, rekonstruiert anhand von Otolithen. Berliner Geowissenschaftliche Abhandlungen A 26, 1211.Google Scholar
Seilacher, A., Reif, W.-E. & Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B 311, 524.Google Scholar
Sorbini, L. 1968. Contributo alla sedimentologia della “Pesciara” di Bolca. Memorie del Museo Civico di Storia Naturale di Verona 15, 213–21.Google Scholar
Stephens, R. R. 2010. A description of the cephalic lateralis system of Anchoa mitchilli (Valenciennes) (Clupeomorpha: Engraulidae) with identification of synapomorphies for the Engraulidae. Proceedings of the Biological Society of Washington 123, 816.Google Scholar
Stinton, F. C. 1985. British Quaternary fish otoliths. Proceedings of the Geologists' Association 96, 199215.Google Scholar
Taverne, L. 2007. Les poissons crétacés de Nardò. 25°. Italoclupea nolfi gen. et sp. nov. (Teleostei, Clupeidae). Bollettino del Museo Civico di Storia Naturale di Verona 31, 2135.Google Scholar
Tiwari, R. P. & Bannikov, A. F. 2001. Early Miocene marine fishes from the Surma Group, Mizoram, India. Bollettino del Museo Civico di Storia Naturale di Verona 25, 1126.Google Scholar
Weitzman, S. H. 1962. The osteology of Brycon meeki, a generalized characid fish, with an osteological definition of the family. Stanford Ichthyological Bulletin 8, 177.Google Scholar
Whitehead, P. J. P. 1963. A contribution to the classification of clupeoid fishes. Annals and Magazine of Natural History 13 (5), 737–50.Google Scholar
Whitehead, P. J. P. 1972. A synopsis of the clupeoid fishes of India. Journal of the Marine Biological Association of India 14, 160256.Google Scholar
Whitehead, P. J. P. 1985. King herring: his place amongst the clupeoids. Canadian Journal of Fisheries and Aquatic Sciences 42, 320.Google Scholar
Whitehead, P. J. P., Nelson, G. J. & Wongratana, T. 1988. Clupeoid fishes of the World (Suborder Clupeoidei): an annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf herrings. Part 2. Engraulididae. FAO Fisheries Synopses 125, 305579.Google Scholar
Wilson, A. B., Teugels, G. G. & Meyer, A. 2008. Marine incursion: The freshwater herring of Lake Tanganyika are the product of a marine invasion into West Africa. PLoS ONE 3, e1979.Google Scholar
Yabumoto, Y. 1988. Pleistocene clupeid and engraulid fishes from the Kokubu Group in Kagoshima Prefecture, Japan. Bulletin of the Kitakyushu Museum of Natural History 8, 5574.Google Scholar
Yáñez-Arancibia, A. & Ruiz, L. J. 1978. Osteologia de Anchoa parva (Meck e Hildebrand) y su discusión comparada con seis especies de la familia (Pisces: Engraulidae). Annales del Centro de Ciencias del Mar y Limnologia, Universidad Nacional Autónoma de México 5, 726.Google Scholar
Yokoyama, K., Shiba, M., Koizumi, Y. & Miyazawa, I. 2013. Fish fossils of Clupeidae and Engraulidae from the Middle Pleistocene Iwabuchi Formation of the Ihara Group distributed at Minami-Matsuno, Fuji City, Shizuoka Prefecture, Japan. Natural History of the Tokai District 6, 1925 (in Japanese).Google Scholar