Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:25:54.137Z Has data issue: false hasContentIssue false

An updated and refined Holocene uplift history of southern Tenerife (Canary Islands) and the possible consequences for future volcanic activity

Published online by Cambridge University Press:  20 July 2015

E. BUCHNER*
Affiliation:
HNU – Neu-Ulm University of Applied Sciences, Wileystraße 1, 89231 Neu-Ulm, Germany Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstraße 18, 70174 Stuttgart, Germany
J. KRÖCHERT
Affiliation:
CDM Smith Consult GmbH, Motorstraße 5, 70499 Stuttgart, Germany
M. SCHMIEDER
Affiliation:
Philamlife Village, Pueblo de Oro, Upper Carmen, Cagayan de Oro 9000, Philippines
*
Author for correspondence: elmar.buchner@hs-neu-ulm.de

Abstract

Various uplift markers suggest asymmetrical uplift of Tenerife Island, with stable conditions in the north but significant uplift of up to 45 m in the south over the past ~42 ka. Fossil shells in beach deposits uplifted by 7.5–9 m were 14C-dated at a Holocene age of 2460±35 bp (1σ). This confirms earlier results and documents very young, and probably still ongoing, uplift of southern Tenerife potentially caused by ascending magma. This underlines that southern Tenerife is probably undergoing a further cycle of volcanic activity that started ~95 ka ago.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, J., Uchupi, E., Muñoz, A., Herranz, P., Palomo, C. & Ballesteros, M. 2003. ZEE Working Group, 2003. Geologic evolution of the Canarian Islands of Lanzarote, Fuerteventura, Gran Canaria, and La Gomera and comparison of landslides at these islands with those at Tenerife, La Palma and El Hierro. Marine Geophysical Researches 24, 140.CrossRefGoogle Scholar
Amelung, F., Jónsson, S., Zebker, H. & Segall, P. 2000. Widespread uplift and trapdoor faulting on Galápagos volcanoes observed with radar interferometry. Nature 407, 993–6.Google Scholar
Bravo, T. 1952. Aportación al estudio geomorfológico y geológico de la costa de la fosa tectónica del valle de valle de la Orotava. Boletín de la Real Sociedad Española de Historia Natural, Sección Geologia 50 (1), 532.Google Scholar
Bryan, S. E., Martí, J. & Cas, R. A. F. 1998. Stratigraphy of the Bandas del Sur formation: an extracaldera record of quaternary phonolitic explosive eruptions from the Las Cañadas edifice, Tenerife (Canary Islands). Geological Magazine 135, 605–36.Google Scholar
Buchner, E. & Kröchert, J. 2009. A record of long-time rift activity and earthquake-induced ground effects in Pleistocene deposits of southern Tenerife (Canary Islands, Spain). Marine Geophysical Researches 30, 147–59.CrossRefGoogle Scholar
Carracedo, J. C. 1999. Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. Journal of Volcanology and Geothermal Research 94, 119.Google Scholar
Carracedo, J. C., Pérez, F. J., Ancochea, E., Meco, J., Hernán, F., Cubas, C. R., Casillas, R., Rodriguez, E. & Ahijado, A. 2002. Cenozoic volcanism II: the Canary Islands. In The Geology of Spain (ed. Gibbons, W. & Moreno, T.), pp. 439–72. London: The Geological Society of London.Google Scholar
Carracedo, J. C., Rodríguez Badiola, E., Guillou, H., Paterne, M., Scaillet, S., Pérez Torrado, F. J., Paris, R., Fra-Paleo, U. & Hansen, A. 2007. Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. The Geological Society of America Bulletin 119, 1027–51.Google Scholar
Faure, H. & Elouard, P. 1967. Schéma des variations du niveau de l’océan Atlantique sur la côte de l’Ouest de l’Afrique depuis 40000 ans. Comtes Rendus de Académie des Sciences, Paris 265, 784–7.Google Scholar
Faure, H., Fontes, J. C., Hebrard, L., Monteillet, J. & Pirazzoli, P. A. 1980. Geoidal change and shore-level tilt along Holocene estuaries: Senegal River area, West Africa. Science 21, 421–3.CrossRefGoogle Scholar
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K. & Chappell, J. 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, 327–42.Google Scholar
González, P. J, Samsonov, S. V., Pepe, S., Tiampo, K. F., Tizzani, P., Casu, F., Fernández, J., Camacho, A. G. & Sansosti, E. 2013. Magma storage and migration associated with the 2011–2012 El Hierro eruption: implications for crustal magmatic systems at oceanic island volcanoes. Journal of Geophysical Research: Solid Earth 118, 4361–77.Google Scholar
González de Vallejo, L. I., Capote, R., Cabrera, L., Insua, J. M. & Acosta, J. 2003. Paleoearthquake evidence in Tenerife (Canary Islands) and possible seismotectonic sources. In Geophysics of the Canary Islands (eds Clift, P. & Acosta, J.), pp. 149–60. Marine Geophysical Researches 24. Dordrecht: Springer Netherlands.Google Scholar
González de Vallejo, L. I., Tsigé, M. & Cabrera, L. 2005. Paleoliquefaction features on Tenerife (Canary Islands) in Holocene sand deposits. Engineering Geology 76, 179–90.Google Scholar
Guillou, H., Carracedo, J. C., Paris, R. & Pérèz Torrado, F. J. 2004. Implications for early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth and Planetary Science Letters 222, 599614.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Thut, J., Leone, G., Pfenninger, R. & Maden, C. 2004. A report on sample preparation at the ETH/PSI AMS facility in Zurich. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 267–71.Google Scholar
Hearty, P. J. & Kaufmann, D. S. 2000. Whole-rock aminostratigraphy and Quaternary sea-level history of the Bahamas. Quaternary Research 54 (2), 163–73.Google Scholar
Hildenbrand, A., Gillot, P., Soler, V. & Lahitte, P. 2003. Evidence for a persistent uplifting of La Palma (Canary Islands), inferred from morphological and radiometric data. Earth and Planetary Science Letters 210, 277–89.Google Scholar
Izquierdo, T., Abad, M. & Rodríguez-Vidal, J. 2013. Geomorphological evidence of drowned marine shelves: a review of the offshore data for La Gomera Island (Canary Islands). In Proceedings of the V Regional Committee on Atlantic Neogene Stratigraphy, Huelva, 24–26 September 2013 (Conference paper).Google Scholar
Kinvig, H. S., Winson, A. & Gottsmann, J. 2010. Analysis of volcanic threat from Nisyros Island, Greece, with implications for aviation and population exposure. Natural Hazards and Earth System Sciences 10, 1101–13.Google Scholar
Klug, H. 1968. Morphologische Studien auf den Kanarischen Inseln. Schriften Geographisches Institut Universität Kiel (in German).Google Scholar
Kontogianni, V., Tsoulos, N. & Stiros, S. 2002. Coastal uplift, earthquakes and active faulting of Rhodes Island (Aegean Arc): modelling based on geodetic inversion. Marine Geology 186, 299317.Google Scholar
Kröchert, J. & Buchner, E. 2008. Age distribution of cinder cones within the Bandas del Sur Formation, southern Tenerife, Canary Islands. Geological Magazine 146, 161–72.Google Scholar
Kröchert, J., Maurer, H. & Buchner, E. 2008. Fossil beaches as evidence for significant uplift of Tenerife, Canary Islands. Journal of African Earth Sciences 51, 220–34.CrossRefGoogle Scholar
Lecointre, G., Tinkler, K. & Richards, H. 1967. The marine Quaternary of the Canary Islands. Proceedings of the Academy of Natural Sciences of Philadelphia 119, 325–44.Google Scholar
Martí, J., Mitjavila, J. & Araña, V. 1994. Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geological Magazine 131, 715–27.Google Scholar
Masson, D. G. & Watts, A. B. 1995. Slope failures and debris avalanches on the flanks of volcanic ocean islands; the Canary Islands, off NW Africa. Landslide News 9, 21–4.Google Scholar
Meco, J., Scaillet, S., Guillou, H., Lomoschitz, A., Carracedo, J. C., Ballester, J., Betancort, J.-F. & Cilleros, A. 2007. Evidence for long-term uplift on the Canary Islands from emergent Mio–Pliocene littoral deposits. Global and Planetary Change 57, 222–34.Google Scholar
Meco, J. & Stearns, C. E. 1981. Emergent littoral deposits in the Eastern Canary Islands. Quaternary Research 15, 199208.Google Scholar
Milne, G. A., Long, A. J. & Bassett, S. E. 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24, 1183–202.Google Scholar
Palacios, D., Yanks, A. & Gonzalez, J. A. 1996. The evolution of a volcanic cliff: Fajana, Tenerife, The Canary Islands. Zeitschrift für Geomorphologie 103, 2547.Google Scholar
Paris, R., Guillou, H., Carracedo, J. C. & Perez Torrado, F. J. 2005. Volcanic and morphological evolution of La Gomera (Canary Islands), based on new K–Ar ages and magneticstratigraphy: implications for oceanic island evolution. Journal of the Geological Society, London 162, 501–12.Google Scholar
Pirazzoli, P. A. 1996. Sea-Level Changes – The Last 20000 Years. Chichester: John Wiley & Sons.Google Scholar
Pirazzoli, P. A., Thommeret, J., Thommeret, Y., Laborel, J. & Montaggioni, L. F. 1982. Crustal block movements from Holocene shorelines: Crete and Antikythira (Greece). Tectonophysics 86, 2743.CrossRefGoogle Scholar
Ramalho, R., Helffrich, G., Schmidt, D. N. & Vance, D. 2010. Tracers of uplift and subsidence in the Cape Verde archipelago. Journal of the Geological Society, London 167, 519–38.Google Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J. & Weyhenmeyer, C. E. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–50.Google Scholar
Staudigel, H. & Schmincke, H. U. (1984): The Pliocene seamount series of La Palma/Canary Islands. Journal of Geophysical Research 89, 11195–215.Google Scholar
Stiros, S. C., Pirazzoli, P. A., Fontugne, M., Arnold, M. & Vougioukalakis, G. (2005): Late-Holocene coastal uplift in the Nisyros volcano (SE Aegean Sea): evidence for a new phase of slow intrusive activity. Developments in Volcanology 7, 217–25.Google Scholar
Talavera, F. G., Kardas, S. J., Richards, J. & Richards, H. G. 1978. Quaternary marine mollusks from Tenerife, Canary Islands. The Nautilus 92, 97102.Google Scholar
Talavera, F. G., Paredes, R. & Martín, M. 1989. Catálogo-Inventario Yacimientos Paleontológicos: Provincia de Santa Cruz de Tenerife. La Laguna-Tenerife: Instituto de Estudios Canarios (in Spanish).Google Scholar
Zazo, C., Goy, J. L., Hillaire-Marcel, C., Gillot, P., Soler, V., González, J. Á., Dabrio, C. J. & Ghaleb, B. 2002. Raised marine sequences of Lanzarote and Fuerteventura revisited – a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary. Quaternary Science Reviews 21, 2019–46.Google Scholar
Zazo, C., Goy, J. L., Dabrio, C. J., Bardajı´, T., Hillaire-Marcel, C., Ghaleb, B., González-Delgardo, J. & Soler, V. 2003 a. Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level highstands and climate changes. Marine Geology 194, 103–33.Google Scholar
Zazo, C., Goy, J. L., Hillaire-Marcel, C., González Delgado, J. A., Soler, V., Gahleb, B. & Dabrio, C. J. 2003 b. Registro de los cambios del nivel del mar durante el cuaternario en las Islas Canarias occidentales (Tenerife y La Palma). Estudios Geologicos 59, 133–44.Google Scholar