Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:21:35.807Z Has data issue: false hasContentIssue false

Borings in gneiss boulders in the Miocene (Upper Tortonian) of the Sorbas Basin, SE Spain

Published online by Cambridge University Press:  28 July 2014

FRANCISCO J. RODRÍGUEZ-TOVAR*
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
ALFRED UCHMAN
Affiliation:
Jagiellonian University, Institute of Geological Sciences, Oleandry Str. 2a, PL-30-063 Kraków, Poland
ÁNGEL PUGA-BERNABÉU
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
*
Author for correspondence: fjrtovar@ugr.es

Abstract

Marine invertebrate borings are very rare in crystalline rocks, providing evidence of particular strategies producers use to colonise these unfavourable substrates. In the Sorbas Basin (Almería, southern Spain), Upper Miocene transgressive successions contain blocks of metamorphic and igneous rocks of the Nevado–Filabride Complex of the Betic Cordillera. Ichnological analysis of the embedded blocks shows the presence of two types of macroborings located in gneiss boulders, revealed to be an extraordinary case worldwide. The most abundant are regular hemispherical depressions ascribed reservedly to the well-known, mostly bivalve boring Gastrochaenolites. The second one is a pouch-like depression, tapering downward, elliptical in outline, and clearly different to other non-circular-in-outline, pouch-shaped macroborings. Thus, a new ichnogenus and ichnospecies Cuenulites sorbasensis has been defined. According to the overall shape, an endolithic or semi-endolithic bivalve using chemical means to bore is suggested as the tracemaker. Colonisation could be determined by sea-level coastal dynamics, with decreasing energy during advancing transgression allowing boring, which was then stopped due to supply of fine-grained sediment that killed the borers.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. 1935. Vorzeitliche Lebensspuren. Jena: Gustav Fischer, 644 pp.Google Scholar
Allouc, J., Le Campion-Alsumard, T. & Leung Tack, D. 1996. La bioérosion des substrats magmatiques en milieu littoral: l’example de la pres-qu’ile du Cap Vert (Sénégal Occidental). Geobios 29, 485502.Google Scholar
Anonymous. 1854. On a specimen of gneiss bored by Pholas dactylus. Proceedings of the Academy of Natural Sciences of Philadelphia 6 (for 1853), 438 pp.Google Scholar
Bertling, M., Braddy, S., Bromley, R. G., Demathieu, G. D., Genise, J. F., Mikuláš, R., Nielsen, J.-K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M. & Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia 39, 265–86.CrossRefGoogle Scholar
Braga, J. C., Martín, J. M., Riding, R., Aguirre, J., Sánchez-Almazo, I. M. & Dinarés-Turrel, J. 2006. Testing models for the Messinian Salinity Crisis: the Messinian record in Almería, SE Spain. Sedimentary Geology 188–189, 131–54.Google Scholar
Bromley, R. G. 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology, Palaeoecology 23, 169–97.CrossRefGoogle Scholar
Bromley, R. G. & D’Alessandro, A. 1987. Bioerosion of the Plio-Pleistocene transgression of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia 93, 379442.Google Scholar
Bromley, R. G. & Asgaard, U. 1993. Endolithic community replacement on a Pliocene rocky coast. Ichnos 2, 93116.Google Scholar
Buatois, L. & Encinas, A. 2011. Ichnology, sequence stratigraphy and depositional evolution of an Upper Cretaceous rocky shoreline in central Chile: bioerosion structures in a transgressed metamorphic basement. Cretaceous Research 32, 203–12.CrossRefGoogle Scholar
Codez, J. & Saint-Seine, R. de. 1957. Révision des cirripèdes acrothoracique fossiles. Bulletin de la Société Géologique de France, série 6 7, 699719.Google Scholar
Domènech, R., Gibert, J. M. de & Martinell, J. 2001. Ichnological features of a marine transgression: middle Miocene rocky shores of Tarragona, Spain. Geobios 34, 99107.Google Scholar
Doyle, P., Bennett, M. R. & Cocks, F. M. 1998. Borings in a boulder substrate from the Miocene of southern Spain. Ichnos 5, 277–86.Google Scholar
Fischer, R. 1981. Bioerosion of basalt of the Pacific coast of Costa Rica. Senckenbergiana Maritima 13, 141.Google Scholar
Fischer, R. & Meyer, W. 1985. Observations on rock boring by Alpheus saxidomus (Crustacea: Alpheidae). Marine Biology 89, 213–19.Google Scholar
Gibert, J. M. de, Martinell, J. & Domènech, R. 1998. Entobia ichnofacies in fossil rocky shores, lower Pliocene, northwestern Mediterranean. Palaios 13, 476–87.CrossRefGoogle Scholar
Gmelin, J. F. 1791. Caroli a Linne Systema Naturae per Regna Tria Naturae. Editio decima tertia.Google Scholar
Gómez-Pugnaire, M. T., Rubatto, D., Fernández-Soler, J. M., Jabaloy, A., López-Sánchez-Vicaíno, V., González-Lodeiro, F., Galindo-Zaldívar, J. & Padrón-Navarta, J. A. 2012. Late Variscan magmatism in the Nevado-Filábride Complex: U-Pb geochronologic evidence for the pre-Mesozoic nature of the deepest Betic complex (SE Spain). Lithos 146, 93111.CrossRefGoogle Scholar
Grosse, P. H. 1854. Natural History, Mollusca. The Committee of General Literature and Education, 327 pp.Google Scholar
Haga, T., Kurihara, Y. & Kase, T. 2010. Reinterpretation of the Miocene sea-snake egg Moniopterus japonicas as a boring of rock-boring bivalve Lithophaga (Mytilidae: Mollusca). Journal of Paleontology 84, 848–57.Google Scholar
Jeffreys, J. G. 1865. British Conchology, or an Account of the Mollusca which Now Inhabit the British Isles and the Surrounding Seas. Volume 3. Marine Shells, Comprising the Remaining Conchifera, the Solenoconchia, and Gasteropoda as far as Littorina. London: John Van Voorst, 393 pp.Google Scholar
Johnson, M. E. 2006. Uniformitarianism as a guide to rocky-shore eco-systems in the geologic record. Canadian Journal of Earth Sciences 43, 1119–47.Google Scholar
Johnson, M. E., Wilson, M. A. & Redden, J. A. 2010. Borings in quartzite surf boulders from the Upper Cambrian basal Deadwood Formation, Black Hills of South Dakota. Ichnos 17, 4855.CrossRefGoogle Scholar
Kelly, S. R. A. & Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology 27, 793807.Google Scholar
Kennedy, G. L. 1974. West American Cenozoic Pholadidae (Mollusca: Bivalvia). San Diego Society of Natural History, Memoir 8, 1127.Google Scholar
Leymerie, M. A. 1842. Suite de mémoire sue le Terrain Crétacé du Départment de l’ Aube. Mémoires de la Société Géologique de la France 5, 134.Google Scholar
Martín, J. M. & Braga, J. C. 1994. Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sedimentary Geology 90, 254–68.CrossRefGoogle Scholar
Masuda, K. 1968. Sandpipes penetrating igneous rocks in the environs of Sedai, Japan. Transactions and Proceedings of the Palaeontological Society of Japan 72, 351–62.Google Scholar
Masuda, K. & Matsushima, M. 1969. On the bivalves boring into volcanic rock at Cape Manazuru, Kanagana Prefecture, Japan. Venus 28, 101–9.Google Scholar
McHuron, E. J. 1976. Biology and paleobiology of modern invertebrate borers. Ph.D. thesis, Rice University, Houston, Texas, USA. Published thesis.Google Scholar
McLoughlin, N., Furnes, H., Banerjee, N. R., Staudigel, H., Muehlenbachs, K., de Wit, M. & Van Kranendonk, M. J. 2008. Micro-bioerosion in volcanic glass: extending the ichnofossil record to Archaean basaltic crust. In Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.), pp. 371–96. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Mikuláš, R. 1992. Early Cretaceous borings from Stramberk (Czechoslovakia). Casopis pro Mineralogii a Geologii 37, 297312.Google Scholar
Mikuláš, R., Němečková, M. & Adamovič, J. 2002. Bioerosion and bioturbation on a weathered metavolcanic rock (Cretaceous, Czech Republic). Acta Geologica Hispanica 37, 21–7.Google Scholar
Montague, K. E., Walton, A. W. & Hasiotis, S. T. 2010. Euendolithic microborings in basalt glass fragments in hyaloclastites: extending the ichnofabric index to microbioerosion. Palaios 25, 393–9.Google Scholar
Montenat, C. 1990. Les Bassins Neógènes du domaine Bétique Oriental (Espagne). Documents et Travaux. Institut Geologique Albert-Lapparent, Paris 12–13, 392 pp.Google Scholar
Pickerill, R. K., Donovan, S. K. & Portell, R. W. 2002. Bioerosional trace fossils from the Miocene of Carriacou, Lesser Antilles. Caribbean Journal of Science 38, 106–17.Google Scholar
Puga-Bernabéu, Á., Braga, J. C. & Martín, J. M. 2007. High-frequency cycles in Upper-Miocene ramp-temperate carbonates (Sorbas Basin, SE Spain). Facies 53, 329–45.CrossRefGoogle Scholar
Puga-Bernabéu, Á., Martín, J. M. & Braga, J. C. 2007. Tsunami-related deposits in temperate carbonate ramps, Sorbas Basin, southern Spain. Sedimentary Geology 199, 107–27.CrossRefGoogle Scholar
Riding, R., Braga, J. C., Martín, J. M. & Sánchez-Almazo, I. 1998. Mediterranean Messinian salinity crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain. Marine Geology 146, 120.CrossRefGoogle Scholar
Ripley, G. & Dana, C. A. 1873. The American Cyclopaedia, Volume 11. D. Appleton and Company.Google Scholar
Röder, H. 1977. Zur beziehung zwischen konstruktion und substrat bei mechanisch bohrenden bohrmuscheln (Pholadidae, Teredinidae). Senckenbergiana Maritima 9, 104213.Google Scholar
Rodriguez, J. & Gutschick, R. C. 1977. Barnacle borings in live and dead hosts from the Louisiana Limestone (Famennian) of Missouri. Journal of Paleontology 51, 718–24.Google Scholar
Ruegg, G. J. H. 1964. Geologische onderzoekingen in het bekken van Sorbas. S Spanje. Amsterdam Geological Institute, 64 pp.Google Scholar
Saint-Seine, R. de 1951. Un Cirripede acrothoracique du cretace: Rogerella lecointrei, n. g., n. sp. Comptes Rendus de l’Académie des Sciences 233, 1051–3.Google Scholar
Santos, A., Mayoral, E. & Bromley, R. 2011. Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology 54, 535–45.Google Scholar
Santos, A., Mayoral, E., Johnson, M. E., Gudveig, B. G., Cachão, M., Silva, C. M. da & Ledesma-Vázquez, J. 2012. Extreme habitat adaptation by boring bivalves on volcanically active paleoshores from North Atlantic Macaronesia. Facies 58, 325–38.Google Scholar
Savazzi, E. 2005. The function and evolution of lateral asymmetry in boring endolithic bivalve. Paleontological Research 9, 169–87.Google Scholar
Thenius, E. 1979. Lebensspuren von Ephemeropteran-Larven aus dem Jung-Tertiär des Wiener Beckens. Annalen des Naturhistorischen Museums in Wien 82, 177–88.Google Scholar
Tryon, G. W. Jr. 1862. Classification and synonymy of the recent species of Pholadidae. Proceedings of the Academy of Natural Sciences of Philadelphia 14, 191–221.Google Scholar
Uchman, A., Gaigalas, A., Melešytė, M. & Kazauskas, V. 2007. Trace fossil Asthenopodichnium lithuanicum isp. nov. from the Late Neogene brown-coal deposits, Lithuania. Geological Quarterly 50, 437–46.Google Scholar
Warme, J. E. 1975. Borings as trace fossils, and the processes of marine bioerosion. In The Study of Trace Fossils (ed. Frey, R. W.), pp. 181227. New York: Springer.Google Scholar
Warme, J. E. & McHuron, E. J. 1978. Marine borers: trace fossils and geologic significance. In Trace Fossil Concepts (ed. Basan, P. B.), pp. 67118. Society of Economic Paleontologists and Mineralogists, Short Course no. 5.Google Scholar
Weijermars, R. 1991. Geology and tectonics of the Betic Zone, SE Spain. Earth-Science Reviews 31, 153–84.CrossRefGoogle Scholar
Wilson, M. A. & Palmer, T. J. 1988. Nomenclature of a bivalve boring from the Upper Ordovician of the mid-western United States. Journal of Paleontology 62, 575–7.CrossRefGoogle Scholar
Wilson, M. A. & Palmer, T. J. 1998. The earliest Gastrochaenolites (Early Pennsylvanian, Arkansas, USA): an Upper Paleozoic bivalve boring? Journal of Paleontology 72, 769–72.Google Scholar
Wood, J. 1996. Excursion 2; an introduction to the lower Messinian temperate water facies of the Sorbas Basin (Abada Member and the Azagador Member). In 2nd Cortijo Urra Meeting, Southeast Spain; Field Guide (eds Mather, A. E. & Stakes, M.), pp. 1423. Plymouth, UK: University of Plymouth.Google Scholar
Zwiebel, J. A. & Johnson, M. E. 1995. Late Pleistocene mytilid and petricolid bivalves from the open rocky shores of Pacific Baja California (Mexico): unusual preservation of macrofossils. Journal of Coastal Research 11, 704–16.Google Scholar