Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T04:43:20.616Z Has data issue: false hasContentIssue false

Cambro-Ordovician strata in Ny Friesland, Spitsbergen and their palaeotectonic significance

Published online by Cambridge University Press:  01 May 2009

K. Swett
Affiliation:
Department of Geology, The University of Iowa Iowa City, Iowa 52242, U.S.A.

Abstract

Summary

Field and petrologic investigations of Cambro-Ordovician strata in Ny Friesland, Spitsbergen reveal a stratigraphic, sedimentologic, and diagenetic history for those rocks that bear striking similarities to coeval strata in central East Greenland, northwest Scotland and western Newfoundland. Parallels between these presently widely separated areas include: stratigraphic sequence (including enigmatic gaps), sedimentary structures, faunal assemblages, trace fossils, geochemical anomalies, and diagenetic sequences. It seems inescapable that the Cambro-Ordovician successions in Ny Friesland, central East Greenland, northwest Scotland, and western Newfoundland were developed on a once contiguous shelf on the margin of the lapetus Ocean. A tentative sequential tectono-sedimentological facies model of the ‘North Atlantic Geosyncline’ extending in time from late Proterozoic to the opening of the Atlantic Ocean is proposed to explain the empirical data. Slow closure of the lapetus basin, simultaneously involving transgression of the ‘North American’ plate and subduction of lapetus oceanic crust beneath a Euro-Balto-Scandinavian plate, followed by collision of the two continental plates, in turn followed by reopening along the approximate collision boundary appears to explain the observed relationships. This palaeotectonic/sedimentologic model is subject to further testing. The lithostratigraphic scheme is further refined.

Type
Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderman, A. R. & Skinner, H. C. W. 1957. Dolomite sedimentation in the southeast of South Australia. Am. J. Sci. 255, 561–7.CrossRefGoogle Scholar
Badiozamani, K. 1973. The Dorag dolomitization model – application to the Middle Ordovician of Wisconsin. J. sedim. Petrol. 43, 965–84.Google Scholar
Birkenmajer, K. 1958. Preliminary report on the stratigraphy of the Hecla Hoek Formation in Wedel-Jarlsberg Land, Vestispitsbergen. Bull. Acad. Sci. Pol. Sér. sci. chim. geol. geogr., vi, 143–50.Google Scholar
Birkenmajer, K. 1959. Report on the geological investigations of the Hornsund area, Vestspitsbergen in 1958. 1. The Hecla Hoek Formation. Bull. Acad. pol. Sci. Ser. Sci. chim. geol. geogr. vii, 129–36.Google Scholar
Bjørlykke, K. O. 1974. Geochemical and mineralogical influence of Ordovician island arcs on epicontinental clastic sedimentation: A study of Lower Palaeozoic sedimentation in the Oslo region, Norway. Sedimentology 21, 252–72.CrossRefGoogle Scholar
Bloch, S. & Bischoff, J. L. 1979. The effect of low-temperature alteration of basalt on the oceanic budget of potassium. Geology 7, 193–6.2.0.CO;2>CrossRefGoogle Scholar
Bowie, S. H. U. et al., 1966. Potassium rich sediments in the Cambrian of northwest Scotland. Trans. Inst. Min. Met. B 75, 125–45.Google Scholar
Buyce, M. R. & Friedman, G. M. 1975. Significance of authigenic K-feldspar in Cambro-Ordovician carbonate rocks of the Proto-Atlantic shelf in North America. J. sedim. Petrol. 45, 808–21.Google Scholar
Cowie, J. W. 1960. Notes on Lower Cambrian stratigraphy in the boreal regions. Rep. int. geol. Congr., XXI Sess., Norden, 1960, 8, 57.Google Scholar
Cowie, J. W. 1974. The Cambrian of Spitsbergen and Scotland. In Cambrian of the British Isles, Norden and Spitsbergen. Vol. 2. Lower Paleozoic Rocks of the World (ed. Holland, C. W.), pp. 123–55. New York: John Wiley.Google Scholar
Cowie, J. W. & Adams, P. J. 1957. The geology of the Cambro-Ordovician rocks of central East Greenland. Meddr. Grønland 153.Google Scholar
Cowie, J. W. & Spencer, A. M. 1970. Trace fossils from the late Precambrian/Lower Cambrian of East Greenland. In Trace Fossils (ed. Harper, J. C. and Crimes, T. P.), pp. 91100. Geol. Jl Spec. Issue, no. 3.Google Scholar
Deffeyes, K. S., Lucia, F. J. & Weyl, P. K. 1965. Dolomitization of Recent and Plio-Pleistocene sediments by marine evaporite waters on Bonaire, Netherlands Antilles. In Dolomitization and Limestone Diagenesis (ed. Pray, L. C. and Murray, R. C.), pp. 7187. Soc. Econ. Paleontologists and Mineralogists Spec. Publ. 13.Google Scholar
Evamy, B. D. 1967. Dedolomitization and the development of rhombohedral pores in limestones. J. sedim. Petrol. 37, 12041215.CrossRefGoogle Scholar
Fleming, W. L. S. & Edmonds, J. M. 1941. Hecla Hoek Rocks of New Friesland (Spitsbergen). Geol. Mag. 78, 405–28.CrossRefGoogle Scholar
Folk, R. L. & Land, L. S. 1975. Mg/Ca Ratio and salinity: two controls over crystallization of dolomite. Bull. Am. Ass. Petrol. Geol. 59, 60–8.Google Scholar
Folk, R. L. & Siedlecka, A. 1974. The ‘schizohaline’ environment: its sedimentary and diagenetic fabrics as exemplified by Late Paleozoic rocks of Bear Island, Svalbard. Sedim. geol. 11, 115.CrossRefGoogle Scholar
Fortey, R. A. 1974(a). A new pelagic trilobite from the Ordovician of Spitsbergen, western Ireland and Utah. Palaeontology 127, 111–24.Google Scholar
Fortey, R. A. 1974(b). The Ordovician trilobites of Spitsbergen. I. Olenidae. Skr. norsk Polarinst. 160.Google Scholar
Fortey, R. A. 1976. Correlation between shelly and graptolitic early Ordovician successions, based on the sequence in Spitsbergen. In The Ordovician System. Proceedings of a Paleontological Assoc. Symposium held at Birmingham, Sept. 1974. University of Wales Press, (ed. Basset, M. G.), pp. 263–80.Google Scholar
Fortey, R. A. & Barnes, C. R. 1977. Early Ordovician conodont and trilobite communities of Spitsbergen: influence on biogeography. Alcheringa 1, 297309.CrossRefGoogle Scholar
Fortey, R. A. & Bruton, D. L. 1973. Cambrian–Ordovician rocks adjacent to Hilopenstretet, North Ny Friesland, Spitsbergen. Bull. geol. Soc. Am. 84, 2227–42.2.0.CO;2>CrossRefGoogle Scholar
Gobbett, D. J. & Wilson, C. B. 1960. The Oslobreen series, Upper Hecla Hoek of Ny Friesland, Spitsbergen. Geol. Mag. 97, 441–57.CrossRefGoogle Scholar
Hallam, A. 1958. A Cambro-Ordovician fauna from the Hecla Hoek succession of Ny Friesland, Spitsbergen. Geol. Mag. 95, 71–6.CrossRefGoogle Scholar
Hallam, A. & Swett, K. 1966. Trace fossils from the Lower Cambrian Pipe Rock of the northwest Highlands. Scott. J. Geol. 2, 101–6.CrossRefGoogle Scholar
Haller, John. 1971. Geology of the East Greenland Caledonides. New York: Interscience.Google Scholar
Hanshaw, B. B., Back, W. & Deike, R. G. 1971. A geochemical hypothesis for dolomitization by ground water. Econ. Geology. 66, 710–24.CrossRefGoogle Scholar
Harland, W. B. 1961. An outline structural history of Spitsbergen in: Geology of the Arctic (Raasch, G. O., ed.) Mem. Am. Ass. Petrol. Geol. 19, 68132.Google Scholar
Harland, W. B. 1969. Contribution of Spitsbergen to understanding of tectonic evolution of North American region. Mem. Am. ass. Petro. Geol. 12, 817–51.Google Scholar
Harland, W. B. 1971. Tectonic transpression in Caledonian Spitsbergen. Geol. Mag. 108, 2742.CrossRefGoogle Scholar
Harland, W. B. 1972. Early Paleozoic faults as margins of Arctic plates in Svalbard. Int. geol. Cong. 24th Session, Montreal, 1972, Section 3, 230–7.Google Scholar
Harland, W. B. 1978. The Caledonides of Svalbard. Geol. Surv. Pap. Can. 78–13, pp. 311.Google Scholar
Harland, W. B., Cutbill, J. L., Friend, P. F., Gobbett, D. J., Holliday, D. W., Maton, P. I., Parker, J. R & Wallis, R. H. 1974. The Billefjorden fault zone, Spitsbergen. The long history of a major tectonic lineament. Skr. norsk Polarinst., 161.Google Scholar
Harland, W. B. & Herod, K. N. 1975. Glaciations through time. In Ice Ages: Ancient and Modern (ed. Wright, A. E. and Moseley, F.), pp. 189216. Geol. J. Spec. Issue 6.Google Scholar
Harland, W. B., Horsfield, W. T., Manby, G. M. & Morris, A. P. 1979. An outline pre-Carboniferous stratigraphy of central western Spitsbergen. Skr. norsk. Polarinst. 167, 119–44.Google Scholar
Harland, W. B. & Masson-Smith, D. 1962. Spitsbergen, Southern Ny Friesland. From surveys and compilation by the Cambridge Spitsbergen Expeditions 1949–1958 (Topographical Map) Scale 1:125000. Royal Geographical Society.Google Scholar
Harland, W. B., Wallis, R. H. & Gayer, R. A. 1966. A revision of the Lower Hecla Hoek succession in central north Spitsbergen and correlation elsewhere. Geol. Mag. 103, 7097.CrossRefGoogle Scholar
Harland, W. B. & Wilson, C. B. 1956. The Hecla Hoek Succession in Ny Friesland, Spitsbergen. Geol. Mag. 93, 265–86.CrossRefGoogle Scholar
Harland, W. B. & Wright, N. J. R. 1979. Alternative hypothesis for the pre-Carboniferous evolution of Svalbard. Skr. norsk Polarinst. 167, 89117.Google Scholar
Hay, R. L. 1966. Zeolites and zeolitic reactions in sedimentary rocks. Spec. Pap. geol. Soc. Am. 85.Google Scholar
Hill, D. 1972. Archaeocyatha. Part E, Treatise on Invertebrate Paleontology (ed. Teichert, C.). Geological Society of America and University Of Kansas Press.Google Scholar
Illing, L. V., Wells, A. J. & Taylor, J. C. M. 1965. Penecontemporaneous dolomite in the Persian Gulf. In Dolomitization and Limestone Diagenesis (ed. Pray, L. C. and Murray, R. C.). Soc. Econ. Paleontologists and Mineralogists., Spec. Publ. 13, pp. 89–11.Google Scholar
James, N. P. & Kobluck, D. R. 1978. Lower Cambrian patch reefs and associated sediments: southern Labrador, Canada. Sedimentology, 25, 135.CrossRefGoogle Scholar
Kay, M. 1969. Continental Drift in North Atlantic Ocean. In North Atlantic – Geology and Continental drift (ed. Kay, M.). Mem. Am. Ass. Petrol. Geol. 12, 965–73.CrossRefGoogle Scholar
Kendall, A. C. 1977. Origin of dolomite mottling in Ordovician limestones from Saskatchewan and Manitoba. Bull. Can. Petrol. Geol. 25, 480504.Google Scholar
Knauth, L. P. 1979. Model for the origin of chert in limestone. Geology, 7, 274–7.2.0.CO;2>CrossRefGoogle Scholar
Knauth, L. P. & Epstein, S. 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim,. cosmochim. Acta 40, 1095–108.CrossRefGoogle Scholar
Kulling, O. 1934. Scientific results of the Swedish–Norwegian Expedition in the summer of 1931. ii, pt. II. The ‘Hecla Hoek Formation’ round Hinlopenstretet. Geogr. Annlr pp. 161254.Google Scholar
Land, L. S. 1970. Phreatic versus vadose meteoric diagenesis of limestones: evidence from a fossil water table. Sedimentology 14, 175–85.CrossRefGoogle Scholar
Land, L. S. 1973 (a). Contemporaneous dolomitization of middle Pleistocene reefs by meteoric water, North Jamaica. Bull. Mar. Sci., 23, 6492.Google Scholar
Land, L. S. 1973(b). Holocene meteoric dolomitization of Pleistocene limestones, North Jamaica. Sedimentology 20, 411–24.CrossRefGoogle Scholar
Land, L. S. & Epstein, S. 1970. Late Pleistocene diagenesis and dolomitization, North Jamaica. Sedimentology 14, 187200.CrossRefGoogle Scholar
Lucia, F. J. 1961. Dedolomitization in the Tansill (Permian) formation. Bull. geol. Soc. Am. 72, 1107–110.CrossRefGoogle Scholar
Major, H. & Winsnes, T. S. 1955. Cambrian and Ordovician fossils from Sørkapp Land, Spitsbergen. Skr. norsk. Polarinist. 106.Google Scholar
Miller, J. F. & Kurtz, V. E. 1979. Reassignment of the Dolomite Point Formation of East Greenland from Middle Cambrian (?) to the Lower Ordovician based on conodonts. Geol. Soc. Am. Abstr. Progr, 11, p. 480.Google Scholar
Mossler, J. H. 1971. Diagenesis and dolomitization of Swope Formation (Upper Pensylvanian) Southeast Kansas. J. Sedim. Petrol. 41, 962–70.CrossRefGoogle Scholar
Mossler, J. H. 1973. Carbonate facies of the Swope limestone Formation (Upper Pennsylvanian) Southeast Kansas. Bull Kans. geol. Surv. 206, 117.Google Scholar
Odell, N. E. 1927. Preliminary notes on the geology of the eastern parts of Spitsbergen, with special reference to the problem of the Hecla Hoek Formation. Q. Jl geol. Soc. Lond. 83, 147–62.CrossRefGoogle Scholar
Orvin, A. K. 1940. Outline of the geological history of Spitsbergen. Skr. Svalbard Ishavet 78, 157.Google Scholar
Peel, J. S. & Cowie, J. W. 1979. New names for Ordovician formations in Greenland. Rapp. Grønlandsgeol. Unders. 91, 117–24.CrossRefGoogle Scholar
Peterson, M. N. A. & Von Der Borch, C. C. 1965. Chert: modern inorganic deposition in a carbonate-precipitating locality. Science 149, 1501–3.CrossRefGoogle Scholar
Pettijohn, F. J. 1963. Chemical composition of sandstones – excluding carbonate and volcanic sands, in Data of Geochemistry (6th ed.). Prof. Pap. U.S. geol. Surv. 440–S.Google Scholar
Poulsen, C. 1951. The position of the East Greenland Cambro-Ordovician in the palaeogeography of the North Atlantic region. Meddr dansk geol. Foren. 12, 161–2.Google Scholar
Scrutton, C. T., Horsfield, W. T. & Harland, W. B. 1976. Silurian fossils from western Spitsbergen. Geol. Mag. 113, 519–23.CrossRefGoogle Scholar
Siever, R. 1962. Silica solubility, 0–200° C and the diagenesis of siliceous sediments. J. Geol. 70, 127–50.CrossRefGoogle Scholar
Shearman, D. J., Khouri, J. & Taha, S. 1961. On the replacement of dolomite by calcite in some Mesozoic Limestones from the French Jura. Proc. geol. Ass. 72, 112.CrossRefGoogle Scholar
Shearer, H. K. 1918. The slate deposits of Georgia. Bull. geol. Surv. Ga. 34.Google Scholar
Shinn, E. A., Ginsburg, R. N. & Lloyd, R. M. 1965. Recent supratidal dolomite from Andros Island, Bahama. in Dolomitization and Limestone Diagenesis (ed. Pray, L. C. and Murray, R. C.). Soc. Econ. Paleontologists Mineralogists Spec. Pub. 13, pp. 112–23.Google Scholar
Stevens, R. K. 1970. Cambro-Ordovician flysch sedimentation and tectonics in west Newfoundland and their possible bearing on a proto-Atlantic ocean. Spec. pap. Geol. Ass. 7, 165–77.Google Scholar
Stømer, Leif. 1967. Some aspects of the Caledonian geosyncline and foreland west of the Baltic Shield. Q. Jl geol. Soc. Lond. 123, 183214.CrossRefGoogle Scholar
Swett, K. 1964. Petrology and paragenesis of the Ordovician Manitou Formation along the Front Range pf Colorado. J. sedim. Petrol. 34, 615–24.Google Scholar
Swett, K. 1965 (a). Diagenetic mottling in dolomitic limestones, dolostones, and cherts, Northwest Scotland. Geol. Soc. Am. Progm. Abstr. (Kansas City), p. 169.Google Scholar
Swett, K. 1965(b). Dolomitization, silicification and calcitization patterns in Cambro-Ordovician oolites from northwest Scotland. J. sedim. Petrol. 35, 928–38.Google Scholar
Swett, K. 1968. Authigenic feldspars and cherts resulting from dolomitization of illitic limestones: A hypothesis. J. sedim. Petrol. 38, 128–35.Google Scholar
Swett, K. 1969. An interpretation of the depositional and diagenetic history of the Cambro-Ordovidian succession of northwest Scotland. In North Atlantic Geology and Continental Drift (ed. Kay, M.). Mem. Am. Ass. Petrol. Geol. 12, 630–46.Google Scholar
Swett, K., Klein, G. DeV. & Smit, D. E. 1971. A Cambrian tidal sand body. The Eriboll Sandstone of northwest Scotland: an ancient–recent analog. J. Geol. 79, 400415.CrossRefGoogle Scholar
Swett, K. & Smit, D. E. 1972(a). Paleogeography and depositional environments of the Cambro-Ordovician shallow marine facies of the North Atlantic. Bull. Geol. Soc. Am. 83, 3223–48.CrossRefGoogle Scholar
Swett, K. & Smit, D. E. 1972(b). Cambro-Ordovician shelf sedimentation of western Newfoundland, northwest Scotland, and central East Greenland. Int. geol. 24th Session, Montreal, 1972, section 6, pp. 3341.Google Scholar
Vallance, G. & Fortey, R. Z. 1968, Ordovician succession in north Spitsbergen. Proc. geol. Soc. Lond. no. 1648, 91–7.Google Scholar
Walker, T. R. 1962. Reversible nature of chert-carbonate replacement in carbonate rocks. Bull. geol. Soc. Am. 73, 237–41.CrossRefGoogle Scholar
Weaver, C. E. 1967. Potassium, illite and the ocean. Geochim. cosmochim. Acta 31, 2181–96.CrossRefGoogle Scholar
Westergård, A. H. 1931. Diplocraterion, Monocraterion, and Scolithus from the Lower Cambrian of Sweden. Sver. geol. Unders. Afh. 25, 125.Google Scholar
Whittington, H. B. 1968. Zonation and correlation of Canadian and early Mohawkian. In Studies of Appalachian geology: Northern and Maritime, pp. 4960. New York: Interscience.Google Scholar
Whittington, H. B. & Hughes, C. P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. Phil. Trans. R. Soc. Lond. B 263, 235–78.Google Scholar
Yochelson, E. L. 1977. Agmata, a proposed extinct Phylum of Early Cambrian age. J. Paleont. 51, 437–54.Google Scholar
Young, H. R. 1979. Evidence of former evaporites in the Cambro-Ordovician Durness Group, Northwest Scotland. Sedim. Geol. 22, 287303.CrossRefGoogle Scholar
Zenger, D. H. 1972. Significance of supratidal dolomitization in the geologic record. Bull. geol. Soc. Am. 83, 112.CrossRefGoogle Scholar
Zenger, D. H. 1973. Syntaxial calcite borders on dolomite crystals, Little Falls Formation (Upper Cambrian), New York. J. sedim. Petrol. 43, 118–24.Google Scholar