Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:33:59.789Z Has data issue: false hasContentIssue false

Carbon isotope fluctuations of terrestrial organic matter for the Upper Cretaceous (Cenomanian–Santonian) in the Obira area of Hokkaido, Japan

Published online by Cambridge University Press:  15 July 2009

GO-ICHIRO URAMOTO*
Affiliation:
Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
YOSHIHIRO ABE
Affiliation:
Marubeni Corporation, 1-4-2 Ote-machi, Chiyoda-ku, Tokyo 100-8088, Japan
HIROMICHI HIRANO
Affiliation:
Department of Earth Sciences, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan
*
*Author for correspondence: uramoto_go-ichiro@graduate.chiba-u.jp

Abstract

Stratigraphic fluctuations of carbon isotope values of terrestrial organic matter within the Upper Cretaceous (Cenomanian–Santonian) sequence in the Obira area of Hokkaido, Japan, record distinctive δ13C fluctuations for the Cenomanian–Turonian boundary, the Middle Turonian, the upper Turonian–lower Coniacian, and the Santonian. A biostratigraphic framework of the age-diagnostic taxa (ammonoids, bivalves and planktic foraminifers) indicates that these δ13C fluctuation events are comparable with those recorded in δ13C data of terrestrial organic matter in Japan and marine carbonates in Europe. These correlations reinforce the utility of these δ13C events in terms of global chemostratigraphy. In particular, the δ13C patterns within the overall positive interval of the Cenomanian–Turonian boundary event are highly conformable between marine and terrestrial records. The consistent nature of these different records of δ13C fluctuation patterns demonstrates that the terrestrial organic δ13C data mirror the global-scale δ13C patterns in the carbon reservoir of ocean–atmosphere–terrestrial biosphere during the Cenomanian–Turonian boundary event. In addition, global correlation of short-term marine and terrestrial organic δ13C fluctuations of the Upper Cretaceous sequence indicate that the magnitude of several terrestrial organic δ13C events appears more amplified than that of coeval marine carbonate δ13C events. This correlation is interpreted to mean that the effects of local CO2 emission into the atmosphere by release of terrestrial methane hydrate or biomass burning of terrestrial vegetation in the hinterland of the NE Asian region have been superimposed on the global δ13C trend and resulted in the terrestrial organic δ13C records of the Yezo Group.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, A. & Kakegawa, T. 2007. Carbon isotope record of terrestrial organic matter and occurrence of planktonic foraminifera from the Albian Stage of Hokkaido, Japan: ocean-atmosphere δ13C trends and chronostratigraphic implications. Palaios 22, 417–32.Google Scholar
Ando, A., Kakegawa, T., Takashima, R. & Saito, T. 2002. New perspective on Aptian carbon isotope stratigraphy: Data from δ13C records of terrestrial organic matter. Geology 30, 227–30.Google Scholar
Ando, A., Kakegawa, T., Takashima, R. & Saito, T. 2003. Stratigraphic carbon isotope fluctuations of detrital woody materials during the Aptian Stage in Hokkaido, Japan: Comprehensive δ13C data from four sections of the Ashibetsu area. Journal of Asian Earth Sciences 21, 835–47.CrossRefGoogle Scholar
Archer, D. 2007. Methane hydrate stability and anthropogenic climate change. Biogeosciences 4, 521–44.Google Scholar
Arens, N. C., Jahren, A. H. & Amundson, R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26, 137–64.2.0.CO;2>CrossRefGoogle Scholar
Arthur, M. A., Dean, W. E. & Pratt, L. M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335, 714–17.CrossRefGoogle Scholar
Bornemann, A., Norris, R. D., Frierich, O., Beckmann, B., Schouten, S., Sinninghe Damsté, J. S., Vogel, J., Hofmann, P. & Wagner, T. 2008. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319, 189–92.Google Scholar
Bowman, A. R. & Bralower, T. J. 2005. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Marine Geology 217, 305–21.Google Scholar
Finkelstein, D. B., Pratt, L. M. & Brassell, S. C. 2006. Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record? Earth and Planetary Science Letters 250, 501–10.CrossRefGoogle Scholar
Funaki, H. & Hirano, H. 2004. Cretaceous stratigraphy in the northeastern part of the Obira area, Hokkaido, Japan. Bulletin of the Mikasa City Museum 8, 1735 (in Japanese with English abstract).Google Scholar
Gale, A. S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. In Sequence stratigraphy in British Geology (eds Hesselbo, S. P. & Parkinson, D. N.), pp. 177–95. Geological Society of London, Special Publication no. 103.Google Scholar
Gale, A. S., Jenkyns, H. C., Kennedy, W. J. & Corfield, R. M. 1993. Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. Journal of the Geological Society, London 150, 2932.Google Scholar
Gale, A. S., Kennedy, W. J., Voigt, S. & Walaszczyk, I. 2005. Stratigraphy of the Upper Cenomanian–Lower Turonian chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research 26, 460–87.Google Scholar
Gröcke, D. R., Price, G. D., Robinson, S. A., Baraboshkin, E. Y., Mutterlose, J. & Ruffell, A. H. 2005. The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters 240, 495509.CrossRefGoogle Scholar
Hasegawa, T. 1997. Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 251–73.Google Scholar
Hasegawa, T. 2001. Predominance of terrigenous organic matter in Cretaceous marine fore-arc sediments, Japan and Far East Russia. International Journal of Coal Geology 47, 207–21.Google Scholar
Hasegawa, T. 2003 a. A global carbon-isotope event in the Middle Turonian (Cretaceous) sequences in Japan and Russian Far East. Proceedings of the Japan Academy, Series B 79, 141–4.CrossRefGoogle Scholar
Hasegawa, T. 2003 b. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: Increased atmospheric pCO2-induced climate. Journal of Asian Sciences 21, 849–59.Google Scholar
Hasegawa, T. & Hatsugai, T. 2000. Carbon-isotope stratigraphy and its chronostratigraphic significance for the Cretaceous Yezo Group, Kotanbetsu area, Hokkaido, Japan. Paleontological Research (Japan) 4, 95106.Google Scholar
Hasegawa, T., Pratt, L. M., Maeda, H., Shigeta, Y., Okamoto, T., Kase, T. & Uemura, K. 2003. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology 189, 97115.Google Scholar
Hasegawa, T. & Saito, T. 1993. Global synchroneity of a positive carbon isotope excursion at the Cenomanian/Turonian boundary: Validation by calcareous microfossil biostratigraphy of the Yezo Group, Hokkaido, Japan. The Island Arc 3, 181–91.CrossRefGoogle Scholar
Hunt, J. M. 1996. Petroleum Geochemistry and Geology, 2nd edn. New York: W. H. Freeman Company, 743 pp.Google Scholar
Igi, S., Tanaka, K., Hata, M. & Sato, H. 1958. Explanatory text of the geological map of Japan, scale 1:50000, Horokanai. Geological Survey of Japan, Kawasaki, 64 pp. (in Japanese with English abstract).Google Scholar
Jarvis, I., Gale, A. S., Jenkyns, H. C. & Pearce, M. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine 143, 561–608.Google Scholar
Jenkyns, H. C., Gale, A. S. & Corfield, R. M. 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131, 1–34.Google Scholar
Kaneko, M. & Hirano, H. 2005. Dinoflagellate cyst assemblages and reconstruction of primary productivity across the Cenomanian/Turonian boundary in the Obira area, northwestern Hokkaido, Japan. Bulletin of the Mikasa City Museum 9, 2739 (in Japanese with English abstract).Google Scholar
Keller, G., Han, Q., Adatte, T. & Burns, S. J. 2001. Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretaceous Research 22, 391422.Google Scholar
Keller, G., Stübe, D., Berner, Z. & Adatte, T. 2004. Cenomanian–Turonian and δ13C, and δ18O, sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 391422.Google Scholar
Kurihara, K. & Kawabe, F. 2003. Molluscan faunal changes across the Cenomanian/Turonian boundary: A comparison between the Oyubari area, Japan and the Western Interior, USA. Fossils (Palaeontological Society of Japan) 74, 3444 (in Japanese with English abstract).Google Scholar
Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, doi:10.1029/2003PA000908.Google Scholar
Li, X., Jenkyns, H. C., Wang, C., Hu, X., Chen, X., Wei, Y., Huang, Y. & Cui, J. 2006. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, London 163, 375–82.CrossRefGoogle Scholar
Matsumoto, T., Muramoto, K., Hirano, H. & Takahashi, T. 1981. Some Coniacian ammonites from Hokkaido (Studies of the Cretaceous ammonites from Hokkaido-XL). Transactions and Proceedings of the Palaeontological Society of Japan, New Series 121, 5173.Google Scholar
Mitchell, S. F., Paul, C. R. C. & Gale, A. S. 1996. Carbon isotopes and sequence stratigraphy. In High resolution sequence stratigraphy: Innovation and application (eds Howell, J. A. & Aitken, J. E.), pp. 1124. Geological Society of London, Special Publication no.104.Google Scholar
Mukhopadhyay, P. K. 1994. Vitrinite reflectance as maturity parameter: petrographic and molecular characterization and its applications. In Vitrinite reflectance as a maturity parameter: applications and limitations (eds Mukhopadhyay, P. K. & Dow, W. G.), pp. 1–24. American Chemical Society Symposium Series no. 570.Google Scholar
Nishi, H., Takashima, R., Hatsugai, T., Saito, T., Moriya, K., Ennyu, A. & Sakai, T. 2003. Planktonic foraminiferal zonation in the Cretaceous Yezo Group, central Hokkaido, Japan. Journal of Asian Earth Sciences 21, 867–86.Google Scholar
Nishimura, T., Maeda, H & Shigeta, Y. 2006. Ontogenetic shell development of a Cretaceous desmoceratine ammonoids “Tragodesmoceroides subcostatus” Matsumoto, 1942 from Hokkaido, Japan. Paleontological Research (Japan) 10, 1128.Google Scholar
Oizumi, M., Kurihara, K., Funaki, H. & Hirano, H. 2005. Upper Cretaceous stratigraphy in the Obira area, Hokkaido, Japan. Bulletin of the Mikasa City Museum 9, 1126 (in Japanese with English abstract).Google Scholar
Okada, H. 1983. Collision orogenesis and sedimentation in Hokkaido, Japan. In Accretion tectonics in the circum-Pacific regions (eds Hashimoto, M. & Uyeda, S.), pp. 91105. Tokyo: Terra Scientific Publishing Co.CrossRefGoogle Scholar
Paul, C. R. C., Lamolda, M. A., Mitchell, S. F., Vaziri, M. R., Gorostidi, A. & Marshall, J. D. 1999. The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): A proposed European reference section. Palaeogeography, Palaeoclimatology, Palaeoecology 150, 83121.Google Scholar
Pratt, L. M., Arthur, M. A., Dean, W. E. & Scholle, P. A. 1993. Paleo-oceanographic cycles and events during the Late Cretaceous in the Western Interior Seaway of North America. In Evolution of the Western Interior Basin (eds Caldwell, W. G. E. & Kauffman, E. G.), pp. 333–53. Geological Association of Canada, Special Paper no. 39.Google Scholar
Pratt, L. M. & Threlkeld, C. N. 1984. Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, U. S. A. In The Mesozoic of middle North America (eds Stott, D. F. & Glass, D. J.), pp. 305–12. Canadian Society of Petroleum Geologists, Memoir no. 9.Google Scholar
Scholle, P. A. & Arthur, M. A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin 64, 6787.Google Scholar
Sekine, H., Takagi, A. & Hirano, H. 1985. Biostratigraphical study of the Upper Cretaceous of the north-east part of the Obira area, Hokkaido. Fossils (Palaeontological Society of Japan) 38, 115 (in Japanese with English abstract).Google Scholar
Shigeta, Y. & Maeda, H. 2005. Yezo Group research in Sakhalin–a historical view. In The Cretaceous system in the Makarov area, southern Sakhalin, Russian Far East (eds Maeda, H. & Shigeta, Y.), pp. 1–24. National Science Museum Monograph no. 31.Google Scholar
Stoll, H. M. & Schrag, D. P. 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geological Society of America Bulletin 112, 308–19.Google Scholar
Stow, D. A. V., Reading, H. G. & Collinson, J. D. 1996. Deep seas. In Sedimentary environments: processes, facies and stratigraphy, 3rd edn (ed. Reading, H. G.), pp. 395453. Oxford: Blackwell Science.Google Scholar
Takahashi, A. 2005. Responses of inoceramid bivalves to environmental disturbances across the Cenomanian/Turonian boundary in the Yezo forearc basin, Hokkaido, Japan. Cretaceous Research 26, 567–80.Google Scholar
Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R. & Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research 25, 365–90.CrossRefGoogle Scholar
Tanabe, K., Hirano, H., Matsumoto, T. & Miyata, Y. 1977. Stratigraphy of the Upper Cretaceous deposits in the Obira area, northwestern Hokkaido. Science Reports, Department of Geology, Kyushu University 12, 181202 (in Japanese with English abstract).Google Scholar
Tanaka, K. 1963. A study on the Cretaceous sedimentation in Hokkaido, Japan. Report of the Geological Survey of Japan 236, 1122.Google Scholar
Teerman, S. C. & Hwang, R. J. 1991. Evaluation of the liquid hydrocarbon potential of coal by artificial maturation techniques. Organic Geochemistry 17, 749–64.CrossRefGoogle Scholar
Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster, A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T. & Sinninghe Damsté, J. S. 2004. Carbon isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. Journal of the Geological Society, London 161, 711–19.Google Scholar
Tsuchiya, K., Hasegawa, T. & Pratt, L. M. 2003. Stratigraphic relationship between diagnostic carbon isotope profiles and inoceramid biozones from the Yezo Group, Hokkaido, Japan. Journal of the Geological Society of Japan 109, 3040 (in Japanese with English abstract).Google Scholar
Tsushima, K., Tanaka, K., Matsuno, K. & Yamaguchi, S. 1958. Explanatory text of the geological map of Japan, scale 1:50000, Tappu. Geological Survey of Japan, Kawasaki, 74 pp. (in Japanese with English abstract).Google Scholar
Uramoto, G., Fujita, T., Takahashi, A. & Hirano, H. 2007. Cenomanian (Upper Cretaceous) carbon isotope stratigraphy of terrestrial organic matter for the Yezo Group, Hokkaido, Japan. Island Arc 16, 465–78.Google Scholar
Voigt, S. 2000. Cenomanian–Turonian composite δ13C curve for Western and Central Europe: the role of organic and inorganic carbon fluxes. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 91104.Google Scholar
Voigt, S., Aurag, A., Leis, F. & Kaplan, U. 2007. Late Cenomanian to Middle Turonian high-resolution carbon isotope stratigraphy: New data from the Münsterland Cretaceous Basin, Germany. Earth and Planetary Science Letters 253, 196210.Google Scholar
Voigt, S. & Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology 134, 3959.Google Scholar
Whiticar, M. J. 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gases. International Journal of Coal Geology 32, 191215.Google Scholar