Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T01:01:28.988Z Has data issue: false hasContentIssue false

Cathodoluminescence of Recent biogenic carbonates: environmental and ontogenetic fingerprint

Published online by Cambridge University Press:  01 May 2009

V. Barbin
Affiliation:
Muséum d' Histoire naturelle, I route de Malagnou, C.P. 434, CH-1211 Genève 6, Switzerland
K. Ramseyer
Affiliation:
Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland
J. P. Debenay
Affiliation:
Laboratoire de Geologie, Université du Maine, route de Laval, F-72017 Le Mans cédex, France
E. Schein
Affiliation:
Laboratoire des Sciences de la Terre, Université de Reims, B.P., 347, F-51062 Reims cédex, France
M. Roux
Affiliation:
Laboratoire des Sciences de la Terre, Université de Reims, B.P., 347, F-51062 Reims cédex, France
D. Decrouez
Affiliation:
Muséum d' Histoire naturelle, I route de Malagnou, C.P. 434, CH-1211 Genève 6, Switzerland

Abstract

Cathodoluminescence (CL) examination of Recent biogenic carbonates shows that they are often luminescent regardless of their mineralogical composition (calcite v. aragonite), habitat (marine v. fresh water), way of life (sessile v. vagile) or environment (hyper- v. hyposaline water). Thus, the presence of luminescence in biogenic particles is not a reliable indicator of diagenetic alteration as some authors have suggested. In addition, CL can reveal variations in the mineralogy of shell material (e.g. regenerated calcitic v. primary aragonitic) and can highlight growth-related structures. Manganese (Mn2+) is the most likely activator of this luminescence, and its content in the shells of benthic organisms seems to be linked to growth rate, ontogeny, open sea conditions, bathymetry and salinity. In neritic environments the Mn2+ content and the CL of molluscs and foraminifera appear to increase with decreasing salinity. This study indicates that CL may be an important tool for the determination of environmental and ontogenetic parameters in biogenic carbonates in addition to its current use indiagenetic studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlis, S., Grossman, E. L., Yancey, T. E. & McLerran, R. D. 1988. Isotope stratigraphy and paleodepth changes of Pennsylvanian cyclical sedimentary deposits. Palaios 3, 487506.CrossRefGoogle Scholar
Allen, J. A. 1960. Manganese deposition on the shells of living molluscs. Nature 185, 336–7.CrossRefGoogle Scholar
Amieux, P. 1987. Description pétrographique de foraminifères par combinaison d'images en lumière naturelle et en cathodoluminescence. Comptes Rendus de l' Académie des Sciences. Paris (II) 304, 741–4.Google Scholar
Ausseil-Badie, J., Favillier, Th. & Giresse, P. 1985. Significations écologique ou diagénétique des variations minéralogiques et chimiques de tests calcaires de milieux marginaux-littoraux ouest africains et méditerranéens: premier bilans. 110ème Congrès National des Sociétés Savantes, Montpellier, sciences VI, 359–71.Google Scholar
Barbin, V., Ramseyer, K., Decrouez, D. & Herb, R. 1988. Cathodoluminescence des parois de rhodophytes et de foraminifères actuels et fossiles. 12ème Réunion des Sciences de la Terre, Lille, Société Géologique de France (édit.), Paris, 9.Google Scholar
Barbin, V., Ramseyer, K. & Decrouez, D. 1989. Cathodoluminescence microscopy: a tool for paleoenvironmental investigation. EUG V, Strasbourg. Terra Cognita 1 (1), 419–20.Google Scholar
Barbin, V., Decrouez, D., Ramseyer, K., Maier, J. L. & Herb, R. 1989 a. Cathodoluminescence applications aux problèmes paléontologiques et archéologiques. Cristallier Suisse 4, 376–86.Google Scholar
Barbin, V., Ramseyer, K., Decrouez, D. & Herb, R. 1989 b. Remaniement synsedimentaires de micro-organismes: mise en évidence en cathodoluminescence. Geobios 22 (2), 253–9.CrossRefGoogle Scholar
Barbin, V., Schein, E., Roux, M., Decrouez, D. & Ramseyer, K. in press. Stries de croissance révélées par cathodoluminescence dans la coquille de Pecten maximus ŕecent de la rade de Brest (Pectinidae, Bivalvia). Geobios.Google Scholar
Blanchard, S. C. & Chasteen, N. D. 1976. Electron paramagnetic resonance spectrum of a sea shell. Mytilus edulis. Journal of Physical Chemistry 80 (12), 1362–7.CrossRefGoogle Scholar
Broecker, W. S. & Peng, T. H. 1982. Tracers in the Sea. Eldigio Press, 690 pp.Google Scholar
Buestel, D., Gerard, A. & Guenole, A. 1987. Croissance de différents lots de coquille Saint-Jacques Pecten maximus en culture sur le fond dans la rade de Brest. Haliothis 16, 463–77.Google Scholar
Boycott, A. E. 1921. Further observations on the occurrence of manganese in land and fresh-water Mollusca. The Naturalist June 1, London, 209211.Google Scholar
Bradley, H. C. 1910. Manganese in the tissues of lower animals. Journal of Biological Chemistry 8, 237–49.CrossRefGoogle Scholar
Bryan, G. W. 1973. The occurrence and seasonal variation of trace metals in the scallops Pecten maximus (L.) and Chlamys opercularis (L.). Journal of the Marine Biological Association of the United Kingdom 53, 145–66.CrossRefGoogle Scholar
Carriker, M. R., Swann, C. P. & Ewart, J. W. 1982. An exploratory study with the proton microprobe of the ontogenetic distribution of 16 elements in the shell of living oysters. Marine Biology 69, 235–46.CrossRefGoogle Scholar
Czerniakowski, L. A., Lohmann, K. & Wilson, J. L. 1984. Closed-system marine burial diagenesis: isotopic data from the Austin Chalk and its components. Sedimentology 31, 863877.CrossRefGoogle Scholar
Debenay, J. P., Bellion, Y. & Hebrad, L. 1987. La biologie d'un mollusque actuel (Anadara senilis) appliquée à la paléontologie du Quaternaire récent du bassin sénégalo-mauritanien. Comptes Rendus de l' Académie des Sciences, Paris (II) 305, 807–10.Google Scholar
Debenay, J. P., Pages, J. & Diouf, P. S. 1989. Ecological zonation of the hyperhaline estuary of the Casamance River (Senegal): Foraminifera, zooplankton and abiotic variables. Hydrobiologia 174, 161–76.CrossRefGoogle Scholar
Denizot, M., Guelorget, O., Massieux, M. & Perthuisot, J. P. 1981. Une remarquable construction récifale à mélobésiée dans une lagune sursalée du sud-est Tunisien (la Bahiret el Biban). Cryptogamie: Algologie (II) 4, 253–66.Google Scholar
Dorobeck, S. L. 1987. Petrography, geochemistry, and origin of burial diagenetic facies, Siluro-Devonian Hedel-berg group, central Appalachians. American Association of Petroleum Geologists Bulletin 71, 492584.Google Scholar
Gordon, C. M., Carr, R. A. & Larson, R. E. 1970. The influence of environmental factors on the sodium and manganese content of barnacle shells. Limnology and Oceanography 15, 461–6.CrossRefGoogle Scholar
Harris, R. C. 1965. Trace element distribution in molluscan skeletal material I. Magnesium, Iron, Manganese and Strontium. Bulletin of Marine Science 15 (2), 265–73.Google Scholar
Hemming, N. G., Meyers, W. J. & Grams, J. C. 1989. Cathodoluminescence in diagenetic calcites: the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. Journal of Sedimentary Petrology 59 (3), 404–11.Google Scholar
Krinsley, D. 1960. Trace elements in the tests of planktonic foraminifera. Micropaleontology 6 (3), 297300.CrossRefGoogle Scholar
Long, J. V. P. & Agrell, S. O. 1965. The cathodoluminescence of minerals in thin section. Mineralogical Magazine 34, 318–26.CrossRefGoogle Scholar
Marshall, D. J. 1988. Cathodoluminescence of Geological Materials. Boston: Unwin Hyman. 146 pp.Google Scholar
Martin, H. & Zeegers, H. 1969. Cathodo-luminescence et distribution du manganese dans les calcaires et les dolomie du Tournaisien supérieur au Sud de Dinant (Belgique). Comptes Rendus de l' Académie des Sciences, Paris (II) 269, 922–4.Google Scholar
Martini, R., Amieux, P., Gandin, A. & Zaninetti, L. 1987. Triassic foraminifers from Punta Tonnara (SW Sardinia) observed in cathodoluminescence. Revue de Paléobiologie, Genève 6 (1), 2327.Google Scholar
Masuda, F. 1981. Chemical composition in marine carbonates as an indicator of paleoenvironment. Report, Grant-in-Aid, Sciences Research (C), project N 454262, pp. 1–44.Google Scholar
Merlini, M., Girardi, F., Piertra, R. & Brazzelli, A. 1965. The stable manganese content of molluscs from Lake Maggiore determined by activation analysis. Limnology and Oceanography 10, 371–8.CrossRefGoogle Scholar
Meyers, W. J. 1974. Carbonates cement stratigraphy of the Lake Valley formation (Mississippian), Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology 44, 837–61.Google Scholar
Miller, J. & Clarkson, E. N. K. 1980. The post-ecdysial development of the cuticle and eye of the Devonian trilobite Phacops rana milleri Steward 1927. Philosophical Transactions of the Royal Society 288, 461–80.Google Scholar
Milliman, J. D. 1974. Marine carbonates. Berlin: Springer-Verlag, 375 pp.Google Scholar
Pilkey, O. H. & Goodell, H. G. 1963. Trace elements in recent mollusk shells. Limnology and Oceanography 8 (2),137–48.Google Scholar
Pilkey, O. H. & Goodell, H. G. 1964. Comparison of the composition of fossil and recent Mollusk shells. Geological Society of America Bulletin 75, 217–28.CrossRefGoogle Scholar
Popp, B. N., Podosek, F. A., Brannon, J. C., Anderson, T. F. & Pier, J. 1986. 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geochimica et Cosmochimica Acta 50, 1321–8.CrossRefGoogle Scholar
Ramseyer, K., Fischer, J., Matter, A., Eberhardt, P. & Geiss, J. 1989. A cathodoluminescence microscope for low intensity luminescence. Journal of Sedimentary Petrology 59 (4), 619–22.CrossRefGoogle Scholar
Richter, D. K. & Zinkernagel, U. 1980. Mn-activated cathodoluminescence in Echinoid tests. International Association of Sedimentologists, 1st European Regional Meeting 1980, Bochum, Abstracts, 172–6.Google Scholar
Richter, D. K. & Zinkernagel, U. 1981. Zur Anwendung der Kathodolumineszenz in der Karbonatpetrographie. Geologische Rundschau 70 (1), 276302.CrossRefGoogle Scholar
Rosenberg, G. D. 1980. An ontogenetic approach to the environmental significance of bivalve shell chemistry. In Skeletal growth of aquatic organisms (eds. Rhoads, D. C. and Lutz, R.), pp. 133168. New York: Plenum.CrossRefGoogle Scholar
Roux, M., Schein, E., Rio, M., Davanzo, F. & Filly, A. 1990. Enregistrement des parametres du milieu et des phases decroissance par les rapports 18O/16O et 13C/12C dans la coquille de Pecten maximus (Pectinidae, Bivalvia). Comptes Rendus de l' Académie des Sciences, Paris (II) 310, 385–90.Google Scholar
Rucker, J. B. & Valentine, J. W. 1961. Salinity response of trace element concentration in Crassostrea virginica. Nature 190, 10991100.CrossRefGoogle Scholar
Saelen, G. 1989. Diagenesis and construction of the Belemnite rostrum. Palaeontology 32 (4), 765–98.Google Scholar
Saelen, G. & Karstang, T. V. 1989. Chemical signatures of Belemnites. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 177 (3), 333–46.Google Scholar
Segar, D. A., Collins, J. D. & Riley, J. P. 1971. The distribution of the major and some minor, elements in marine animals, part: II Molluscs. Journal of the Marine Biological Association of the United Kingdom 51, 131–6.CrossRefGoogle Scholar
Smith, J. V. & Stenstrom, R. C. 1965. Electron-excited luminescence as a petrologic tool. Journal of Geology 73, 627–35.CrossRefGoogle Scholar
Sommer, S. E. 1972. Cathodoluminescence of carbonates, 2. Geological applications. Chemical Geology 9, 275–84.CrossRefGoogle Scholar
Thornton, S. E., Pilkey, O. H. & Lynts, G. W. 1978. A lagoonal crustose coralline algal micro-ridge: Bahiret el Bibane, Tunisia. Journal of Sedimentary Petrology 48 (3), 743–50.Google Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: theory and application of trace element technique. In Stable isotopes in sedimentary geology (eds Arthur, M. A. Anderson, T. F. Kaplan, I. R. Veizer, J. and Land, L. S.), pp. 3100. Dallas: SEPM short course no. 10.Google Scholar
Warne, S. St. J. 1962. A quick field or laboratory staining scheme for the differentiation of the major carbonate minerals. Journal of Sedimentary Petrology 32 (1), 2938.Google Scholar
Wilbur, K.. M. 1964. Shell formation and regeneration. In Physiology of Mollusca (eds Wilbur, K. M. and Yonge, C. M.), pp. 243–82. London, New York: Academic Press.CrossRefGoogle Scholar
Wilbur, K. M. & Watabe, N. 1963. Experimental studies of calcification in molluscs and the alga Coccolithus huxleyi. Annals, New York Academy of Sciences, 82112.Google Scholar