Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T04:27:29.043Z Has data issue: false hasContentIssue false

Contrasting magma emplacement mechanisms within the Rogart igneous complex, NW Scotland, record the switch from regional contraction to strike-slip during the Caledonian orogeny

Published online by Cambridge University Press:  16 December 2013

H. KOCKS
Affiliation:
Kocks Consult GmbH, Stegemannstr.32–38, Koblenz, Germany
R. A. STRACHAN*
Affiliation:
School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Rd, Portsmouth, PO1 3QL, UK
J. A. EVANS
Affiliation:
NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, UK
M. FOWLER
Affiliation:
School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Rd, Portsmouth, PO1 3QL, UK
*
Author for correspondence: rob.strachan@port.ac.uk

Abstract

The Rogart igneous complex is unique within the northern Scottish Caledonides because it comprises an apparent continuum of magma types that records a progressive change in emplacement mechanisms related to large-scale tectonic controls. Syn-D2 leucogranites and late-D2 quartz monzodiorites were emplaced during crustal thickening and focused within the broad zone of ductile deformation associated with the Naver Thrust. In contrast, emplacement of the post-D2 composite central pluton was controlled by development of a steeply dipping dextral shear zone along the Loch Shin Line, interpreted as an anti-Riedel shear within the Great Glen Fault system. The mantle-derived nature of the late-to-post-D2 melts implies that the Naver Thrust and the Loch Shin Line were both crustal-scale structures along which magmas were channelled during deformation. A U–Pb zircon age of 425±1.5 Ma for the outer component of the central pluton provides an upper limit on regional deformation and metamorphism within host Moine rocks. These findings are consistent with the view that a fundamental change in tectonic regime occurred in the Scottish Caledonides at c. 425 Ma, corresponding to the switch from regional thrusting that resulted from the collision of Baltica and Laurentia, to the development of the orogen-parallel Great Glen Fault system.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsop, G. I., Cheer, D. A., Strachan, R. A., Krabbendam, M., Kinny, P. D., Holdsworth, R. E. & Leslie, A. G. 2010. Progressive fold and fabric evolution associated with regional strain gradients: a case study from across a Scandian ductile thrust nappe, Scottish Caledonides. In Continental Tectonics and Mountain Building: The Legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 255–74. Geological Society of London, Special Publication no. 335.Google Scholar
Atherton, M. P. & Ghani, A. A. 2002. Slab breakoff: a model for Caledonian, late-granite, syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Ireland. Lithos 62, 6585.Google Scholar
Bonsor, H. C., Strachan, R. A., Prave, A. R. & Krabbendam, M. 2012. Sedimentology of the early Neoproterozoic Morar Group in northern Scotland: implications for basin models and tectonic setting. Journal of the Geological Society, London 169, 5365.Google Scholar
Boullier, A. M. & Bouchez, J.-L. 1978. Le quartz en rubans dans les mylonites. Bulletin de la Société géologique de France 7, 235–53.Google Scholar
Brown, M. 1973. The definition of metatexis, diatexis and migmatite. Proceedings of the Geologists’ Association 84, 371–82.Google Scholar
Brown, P. E., Miller, J. A. & Gresty, R. L. 1968. Isotopic ages of Late Caledonian granitic intrusions in the British Isles. Proceedings of the Yorkshire Geological Society 36, 251–76.CrossRefGoogle Scholar
Brown, M. & Solar, G. S. 1999. Granite ascent and emplacement during contractional deformation in orogens. Journal of Structural Geology 20, 1365–93.Google Scholar
Butler, R. W. H. & Coward, M. P. 1984. Geological constraints, structural evolution and the deep geology of the NW Scottish Caledonides. Tectonics 3, 347–65.Google Scholar
Clemens, J. D., Petford, N. & Mawer, C. K. 1997. Ascent mechanisms of granitic magmas: causes and consequences. In Deformation-Enhanced Fluid Transport in the Earth's Crust and Mantle (ed. Holness, M. B.), pp. 144–71. London: Chapman & Hall.Google Scholar
Collins, W. J. & Sawyer, E. W. 1996. Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation. Journal of Metamorphic Geology 14, 565–79.Google Scholar
Corfu, F. & Ayres, L. D. 1984. U-Pb ages and genetic significance of heterogeneous zircon populations in rocks from the Favourable Lake area, north-western Ontario. Contributions to Mineralogy & Petrology 88, 86101.Google Scholar
Coward, M. P. 1990. The Precambrian, Caledonian and Variscan framework to NW Europe. In Tectonic Events Responsible for Britain's Oil and Gas Reserves (eds Hardman, R. F. P. & Brooks, J.), pp. 134. Geological Society of London, Special Publication no. 55.Google Scholar
Dallmeyer, R. D., Strachan, R. A., Rogers, G., Watt, G. R. & Friend, C. R. L. 2001. Dating deformation and cooling in the Caledonian thrust nappes of north Sutherland, Scotland: insights from 40Ar/39Ar and Rb–Sr chronology. Journal of the Geological Society, London 158, 501–12.Google Scholar
De Saint Blanquat, M. & Tikoff, B. 1997. Development of magmatic to solid-state fabrics during syntectonic emplacement of the Mono Creek Granite, Sierra Nevada Batholith. In Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E.). Kluwer Academic Publishers.Google Scholar
Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Saroglu, F. & Şengör, A. M. C. 1986. Shortening of continental lithosphere: the neotectonics of Eastern Anatolia – a young collision zone. In Collision Tectonics (eds Coward, M. P. & Ries, A. C.), pp. 336 Geological Society of London, Special Publication no. 19.Google Scholar
Dewey, J. F. & Strachan, R. A. 2003. Changing Silurian-Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. Journal of the Geological Society, London 160, 219–29.Google Scholar
D'Lemos, R. S., Brown, M. & Strachan, R. A. 1992. Granite magma generation, ascent and emplacement within a transpressional orogen. Journal of the Geological Society, London 149, 487–90.Google Scholar
Drury, M. R. & Urai, J. L. 1990. Deformation-related recrystallisation processes. Tectonophysics 172, 235–53.CrossRefGoogle Scholar
Elliott, D. & Johnson, M. R. W. 1980. Structural evolution in the northern part of the Moine thrust belt, NW Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 71, 6996.CrossRefGoogle Scholar
Fowler, M. B. 1992. Elemental and O-Sr-Nd isotope geochemistry of the Glen Dessary Syenite, NW Scotland. Journal of the Geological Society of London 149, 209–20.Google Scholar
Fowler, M. B. & Henney, P. J. 1996. Mixed Caledonian appinite magmas: implications for lamprophyric fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy and Petrology 126, 199215.Google Scholar
Fowler, M. B., Henney, P. J., Darbyshire, D. P. F. & Greenwood, P. B. 2001. Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society, London 158, 521–34.Google Scholar
Fowler, M. B., Kocks, H., Darbyshire, D. P. F. & Greenwood, P. B. 2008. Petrogenesis of high Ba–Sr granitoids from the Northern Highland Terrane of the British Caledonian Province. Lithos 105, 129–48.Google Scholar
Freeman, S. R., Butler, R. W. H., Cliff, R. A. & Rex, D. C. 1998. Direct dating of mylonite evolution: a multi-disciplinary geochronological study of the Moine Thrust Zone, NW Scotland. Journal of the Geological Society, London 155, 745–58.Google Scholar
Goodenough, K. M., Millar, I. L., Strachan, R. A., Krabbendam, M. & Evans, J. A. 2011. Timing of regional deformation and development of the Moine Thrust Zone in the Scottish Caledonides: constraints from the U-Pb geochronology of alkaline intrusions. Journal of the Geological Society, London 168, 99114.Google Scholar
Grocott, J. & Taylor, G. K. 2002. Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30′S to 27°00′S). Journal of the Geological Society, London 159, 425–43.Google Scholar
Hirth, G. & Tullis, J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology 14, 145–59.Google Scholar
Holdsworth, R. E., Alsop, G. I. & Strachan, R. A. 2007. Tectonic stratigraphy and structural continuity of the northernmost Moine Thrust Zone and Moine Nappe, Scottish Caledonides. In Global Tectonic Processes (eds Ries, A. C., Butler, R. W. H. & Graham, R. H.), pp. 123–44. Geological Society of London, Special Publication no. 272.Google Scholar
Holdsworth, R. E. & Strachan, R. A. 1988. The structural age and possible origin of the Vagastie Bridge granite and associated intrusions, central Sutherland. Geological Magazine 125, 613–20.Google Scholar
Holdsworth, R. E., Strachan, R. A. & Alsop, G. I. 2001. Solid Geology of the Tongue District: Memoir for 1:50 000 Geological Sheet 114E (Scotland). Memoirs of the British Geological Survey. London: H. M. Stationery Office.Google Scholar
Holdsworth, R. E., Strachan, R. A. & Harris, A. L. 1994. Precambrian rocks in northern Scotland east of the Moine Thrust: the Moine Supergroup. In A Revised Correlation of Precambrian Rocks in the British Isles (eds Gibbons, W. & Harris, A. L.), pp. 2332. Geological Society of London, Special Report no. 22.CrossRefGoogle Scholar
Hughes, H. S. R., Goodenough, K. M., Walters, A. S., McCormac, M., Gunns, A. G. & Lacinska, A. 2013. The structure and petrology of the Cnoc nan Cuilean Intrusion, Loch Loyal Syenite Complex, NW Scotland. Geological Magazine 150, 783800.Google Scholar
Hutton, D. H. W. 1988 a. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 245–55.Google Scholar
Hutton, D. H. W. 1988 b. Igneous emplacement in a shear zone termination: the biotite granite at Strontian, Scotland. Geological Society of America Bulletin 100, 1392–99.Google Scholar
Hutton, D. H. W. & McErlean, M. 1991. Silurian and Early Devonian sinistral deformation of the Ratagain granite, Scotland: constraints on the age of Caledonian movements on the Great Glen fault system. Journal of the Geological Society, London 148, 14.Google Scholar
Hutton, D. H. W. & Reavy, R. J. 1992. Strike-slip tectonics and granite petrogenesis. Tectonics 11, 960–67.Google Scholar
Ingram, G. M. & Hutton, D. H. W. 1994. The Great Tonalite Sill; emplacement into a contractional shear zone and implications for Late Cretaceous to Early Eocene tectonics in Southeastern Alaska and British Columbia. Geological Society of America Bulletin 106, 715–28.2.3.CO;2>CrossRefGoogle Scholar
Jacques, J. M. & Reavy, R. J. 1994. Caledonian plutonism and major lineaments in the SW Scottish Highlands. Journal of the Geological Society, London 151, 955–69.CrossRefGoogle Scholar
Jaffey, A. H., Flynn, G. K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.Google Scholar
Johnson, M. R. W. & Frost, R. T. C. 1977. Fault and lineament pattern in the Southern Highlands of Scotland. Geologie en Mijnbouw 56, 287–94.Google Scholar
Johnson, M. R. W., Kelley, S. P., Oliver, G. J. H. & Winter, D. A. 1985. Thermal effects and timing of thrusting in the Moine Thrust zone. Journal of the Geological Society, London 142, 863–74.CrossRefGoogle Scholar
Johnson, M. R. W. & Strachan, R. A. 2006. A discussion of possible heat sources during nappe stacking: the origin of Barrovian metamorphism within the Caledonian thrust sheets of NW Scotland. Journal of the Geological Society, London 163, 579–82.Google Scholar
Karlstrom, K. E. & Williams, M. L. 1995. The case for simultaneous deformation, metamorphism and plutonism: an example from Proterozoic rocks in central Arizona. Journal of Structural Geology 17, 5981.Google Scholar
Kelley, S. P. 1988. The relationship between K–Ar mineral ages, mica grainsizes and movement on the Moine Thrust Zone, NW Highlands, Scotland. Journal of the Geological Society, London 145, 110.Google Scholar
Kinny, P. D., Friend, C. R. L., Strachan, R. A., Watt, G. R. & Burns, I. M. 1999. U-Pb geochronology of regional migmatites in East Sutherland, Scotland: evidence for crustal melting during the Caledonian Orogeny. Journal of the Geological Society, London 156, 1143–52.CrossRefGoogle Scholar
Kinny, P. D., Strachan, R. A., Rogers, G. R., Friend, C. R. L. & Kocks, H. 2003. U–Pb geochronology of deformed meta-granites in central Sutherland, Scotland: evidence for widespread Silurian metamorphism and ductile deformation of the Moine Supergroup during the Caledonian orogeny. Journal of the Geological Society, London 160, 259–69.Google Scholar
Kirkland, C. L., Alsop, G. I. & Prave, A. R. 2008. The brittle evolution of a major strike-slip fault associated with granite emplacement: a case study of the Leannan Fault, NW Ireland. Journal of the Geological Society, London 165, 341–52.Google Scholar
Kocks, H., Strachan, R. A. & Evans, J. A. 2006. Heterogeneous reworking of Grampian metamorphic complexes during Scandian thrusting in the Scottish Caledonides: insights from the structural setting and U-Pb geochronology of the Strath Halladale Granite. Journal of the Geological Society, London 163, 525–38.Google Scholar
Krabbendam, M., Prave, A. R. & Cheer, D. 2008. A fluvial origin for the Neoproterozoic Morar Group, NW Scotland: implications for Torridon-Morar group correlation and the Grenville Orogen Foreland Basin. Journal of the Geological Society, London 165, 379–94.Google Scholar
Krogh, T. E. 1973. A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.Google Scholar
Krogh, T. E. & Davis, G. L. 1975. The production and preparation of 205Pb for use as a tracer for isotope dilution analysis. Carnegie Institute of Washington, Yearbook 74, 416–7.Google Scholar
Lambert, R. St. J. & McKerrow, W. S. 1976. The Grampian Orogeny. Scottish Journal of Geology 12, 271–92.Google Scholar
Leslie, A. G., Krabbendam, M., Kimbell, G. S. & Strachan, R. A. 2010. Regional-scale lateral variation and linkage in ductile thrust architecture: the Oykell Transverse Zone, and mullions, in the Moine Nappe, NW Scotland. In Continental Tectonics and Mountain Building: The Legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 359–81. Geological Society of London, Special Publication no. 335.Google Scholar
Ludwig, K. R. 1993. PBDAT: a computer program for processing Pb-U-Th isotope data, version 1.24. United States Geological Survey Open-file Report 88-542, 33 pp.Google Scholar
Ludwig, K. R. 1994. ISOPLOT: a plotting and regression program for radiogenic-isotope data, version 2.75. United States Geological Survey Open-file Report 91-445, 45 pp.Google Scholar
Miller, R. B. & Paterson, S. R. 1999. In defense of magmatic diapirs. Journal of Structural Geology 21, 1161–73.Google Scholar
Molyneux, S. J. & Hutton, D. H. W. 2000. Evidence for significant space creation by the ballooning mechanism: the example of the Ardara pluton, Ireland. Geological Society of America Bulletin 112, 1543–58.Google Scholar
Morris, G. A. & Hutton, D. H. W. 1993. Evidence for sinistral shear associated with the emplacement of the early Devonian Etive Dyke Swarm. Scottish Journal of Geology 29, 6972.Google Scholar
Morris, G. A., Page, L. & Martinez, V. 2005. New dates (415 Ma) for the Etive Dyke Swarm and the end of the Caledonian Orogeny in the SW Grampian Highlands of Scotland. Journal of the Geological Society, London 162, 741–4.Google Scholar
Neilson, J. C., Kokelaar, B. P. & Crowley, Q. G. 2009. Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland. Journal of the Geological Society, London 166, 545–61.Google Scholar
Noble, S. R., Tucker, R. D. & Pharaoh, T. C. 1993. Lower Palaeozoic and Precambrian igneous rocks from eastern England and their bearing on Ordovician closure of the Tornquist Sea: constraints from U–Pb and Nd isotopes. Geological Magazine 130, 835–46.Google Scholar
Oliver, G. J. H., Chen, F., Buchwaldt, R. & Hegner, E. 2000. Fast tectonometamorphism and exhumation in the type area of the Barrovian and Buchan zones. Geology 28, 459–62.Google Scholar
Oliver, G. J. H., Wilde, S. A. & Wan, Y. 2008. Geochronology and dynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. Journal of the Geological Society, London 165, 661–74.Google Scholar
Passchier, C. W. & Trouw, R. A. J. 2005. Microtectonics. 2nd ed. Berlin: Springer-Verlag, 336 pp.Google Scholar
Paterson, S. R. & Tobisch, O. T. 1988. Using pluton ages to date regional deformations; problems with commonly used criteria. Geology 16, 1108–11.Google Scholar
Paterson, S. R. & Vernon, R. H. 1995. Bursting the bubble of ballooning plutons: a return to nested diapers emplaced by multiple processes. Geological Society of America Bulletin 107, 1356–80.Google Scholar
Petford, N., Kerr, R. C. & Lister, J. R. 1993. Dike transport of granitoid magma. Geology 21, 845–8.Google Scholar
Pickering, K. T., Bassett, M. G. & Siveter, D. J. 1988. Late Ordovician-Early Silurian destruction of the Iapetus Ocean: Newfoundland, British Isles and Scandinavia – a discussion. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 361–82.Google Scholar
Read, H. H., Phemister, J. & Ross, G. 1926. The Geology of Strath Oykell and Lower Loch Shin. Memoirs of the Geological Survey of Great Britain, Scotland. Edinburgh: H. M. Stationery Office.Google Scholar
Read, H. H., Ross, G., Phemister, J. & Lee, G. W. 1925. The Geology of the Country Around Golspie, Sutherlandshire. Memoirs of the Geological Survey of Great Britain, Scotland. Edinburgh: H. M. Stationery Office.Google Scholar
Rogers, G. & Dunning, G. R. 1991. Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. Journal of the Geological Society, London 148, 1727.Google Scholar
Rosenberg, C. L. 2004. Shear zones and magma ascent: a model based on a review of the Tertiary magmatism in the Alps. Tectonics 23, 121.Google Scholar
Schofield, D. & D'Lemos, R. S. 1998. Relationships between syn-tectonic granite fabrics and regional PTtd paths: an example from the Gander-Avalon boundary of NE Newfoundland. Journal of Structural Geology 20, 459–71.Google Scholar
Simpson, C. 1985. Deformation of granitic rocks across the brittle-ductile transition. Journal of Structural Geology 7, 503–12.Google Scholar
Soper, N. J. 1963. The structure of the Rogart igneous complex, Sutherland, Scotland. Quarterly Journal of the Geological Society of London 119, 445–78.Google Scholar
Soper, N. J. & Hutton, D. H. W. 1984. Late Caledonian sinistral displacements in Britain: implications for a three-plate model. Tectonics 3, 781–94.CrossRefGoogle Scholar
Soper, N. J., Ryan, P. D. & Dewey, J. F. 1999. Age of the Grampian orogeny in Scotland and Ireland. Journal of the Geological Society, London 156, 1231–6.CrossRefGoogle Scholar
Soper, N. J., Strachan, R. A., Holdsworth, R. E., Gayer, R. A. & Greiling, R. O. 1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society, London 149, 871–80.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth & Planetary Science Letters 26, 207–21.Google Scholar
Stewart, M., Strachan, R. A., Martin, M. W. & Holdsworth, R. E. 2001. Dating early sinistral displacements along the Great Glen Fault Zone, Scotland: structural setting, emplacement and U–Pb geochronology of the syn-tectonic Clunes Tonalite. Journal of the Geological Society, London 158, 821–30.Google Scholar
Stipp, M., Stünitz, H., Heilbronner, R. & Schmid, S. M. 2002. The eastern Tonale fault zone: a natural laboratory for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology 24, 1861–84.CrossRefGoogle Scholar
Strachan, R. A. & Holdsworth, R. E. 1988. Basement-cover relationships and structure within the Moine rocks of central and southeast Sutherland. Journal of the Geological Society, London 145, 2336.Google Scholar
Strachan, R. A., Holdsworth, R. E., Krabbendam, M. & Alsop, G. I. 2010. The Moine Supergroup of NW Scotland: insights into the analysis of polyorogenic supracrustal sequences. In Continental Tectonics and Mountain Building – The Legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 233–54. Geological Society of London, Special Publication no. 335.Google Scholar
Strachan, R. A., Martin, M. W. & Friderichsen, J. D. 2001. Evidence for contemporaneous yet contrasting styles of granite magmatism during extensional collapse of the northeast Greenland Caledonides. Tectonics 20, 458–73.Google Scholar
Tarney, J. & Jones, C. E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, London 151, 855–68.Google Scholar
Thirlwall, M. F. & Burnard, P. 1990. Pb-Sr-Nd isotope and chemical studies of the origin of undersaturated and oversaturated shoshonitic magmas from the Borralan Pluton, Assynt, NW Scotland. Journal of the Geological Society, London 147, 259–69.Google Scholar
Tikoff, B. & Tessyier, C. 1992. Crustal-scale, en-echelon “P-shear” tensional bridges: a possible solution to the batholithic room problem. Geology 20, 927–30.Google Scholar
Tribe, I. R. & D'Lemos, R. S. 1996. Significance of a hiatus in down-temperature fabric development within syn-tectonic quartz diorite complexes, Channel Islands, UK. Journal of the Geological Society, London 153, 127–38.Google Scholar
Watson, J. V. 1984. The ending of the Caledonian Orogeny in Scotland. Journal of the Geological Society, London 141, 193214.Google Scholar
Weinberg, R. F. & Searle, M. P. 1998. The Pangong Injection Complex, India Karakorum: a case of pervasive granite flow through hot viscous crust. Journal of the Geological Society, London 155, 883–91.Google Scholar