Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T14:54:01.438Z Has data issue: false hasContentIssue false

Deciphering the geodynamic evolution of the Dinaric orogen through the study of the ‘overstepping’ Cretaceous successions

Published online by Cambridge University Press:  15 June 2020

Giuseppe Nirta*
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, U.O.S. Firenze, Via G. La Pira 4, 50121, Firenze, Italy
Martin Aberhan
Affiliation:
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115Berlin, Germany
Valerio Bortolotti
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
Nicolaos Carras
Affiliation:
Hellenic Survey of Geology and Mineral Exploration (HSGME), Spirou Loui 1, 13677Acharnes, Greece
Francesco Menna
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
Milvio Fazzuoli
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
*
Author for correspondence: Giuseppe Nirta, Email: giuseppe.nirta@gmail.com

Abstract

Along the Dinaric–Hellenic orogen, the Late Jurassic – Early Cretaceous ophiolite obduction over the Adria continental margin was sealed by sedimentation of clastic terrestrial deposits rapidly followed by a widespread carbonate platform system since the Early Cretaceous period. These Cretaceous sediments presently crop out over areas of varying extension, from several hundred kilometre wide undeformed continuous covers to small-scale tectonic slivers involved in the tectonic stack following the latest Cretaceous–Palaeogene collision. These deposits are unconformably sedimented above the units formed by the Late Jurassic to Early Cretaceous nappe stacking above the eastern Adria continental margin. We studied these deposits in a large area between western Serbia and eastern Bosnia. In the studied area, these deposits are divided into three lithostratigraphic groups according to their age, depositional environment and type of underlying basement. The Mokra Gora Group sediments (upper Aptian–Maastrichtian) were deposited on top of previously obducted and weathered ophiolites, the Kosjerić Group (Cenomanian–Campanian) overlies composite tectonic units comprising obducted ophiolites and their underlying continental basement portions, while the Guča Group (Campanian–Maastrichtian) exclusively rests on top of continental basement. The reconstructed sedimentary evolution of these groups, together with the comparison with the syn- and post-obduction deposits at the front of the ophiolitic nappe(s) in a wider area of the internal Dinarides (e.g. Pogari Group and Bosnian flysch), allowed us to clarify the obduction mechanisms, including their tectonic context, the changes in depositional environments and the timing of depositional and tectonic events, and, in a wider view, shed light on the geodynamic evolution of the Dinaric belt.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amferer, O (1928) Zur tektonik und morphologie des Zlatibormassivs. Denkschriften der kaiserlichen Akademie der Wissenschaften mathematisch-naturwissenschaftliche Klasse 101, 361424.Google Scholar
Aubouin, J (1973) Des tectoniques superposées et de leur signification par rapport aux modèles géophysiques: l´exemple des Dinarides; paléotectonique, tectonique tarditectonique, néotectonique. Bulletin de la Société géologique de France 15, 428–60.Google Scholar
Aubouin, J, Blanchet, R, Cadet, J-P, Celet, P, Charvet, J, Chorowicz, J, Cousin, M and Rampnoux, J-P (1970) Essai sur la géologie des Dinarides. Bulletin de la Société géologique de France 7ème Série 12, 1060–95.CrossRefGoogle Scholar
Babić, L (1974) Hauterivian to Cenomanian time in the region of Žumberak, Northwestern Croatia: stratigraphy, sediments, paleogeographic and paleotectonic evolution. Geološki Vjesnik 27, 1133 (in Croatian with English summary).Google Scholar
Babić, L and Gušić, I (1978) Review of fossils from the “clastic complex with ophiolites” of Mt. Ivanšiča and their stratigraphic importance. Geološki Vjesnik 30, 119 (in Croatian with English summary).Google Scholar
Babić, L, Gušić, I and Zupanič, J (1976) Paleocene reef-limestone in the region of Banija, Central Croatia. Geološki Vjesnik 29, 1147.Google Scholar
Babić, L, Hochuli, PA and Zupanič, J (2002) The Jurassic ophiolitic mélange in the NE Dinarides: dating, internal structure and geotectonic implications. Eclogae Geologicae Helvetiae 95, 263–75.Google Scholar
Banjac, N (1994a) Contribution to the study of the Upper Cretaceous fauna at Mokra Gora, western Serbia. Radovi Geoinstituta 30, 167–71 (in Serbian).Google Scholar
Banjac, N (1994b) The Upper Cretaceous gastropod genus Vernedia from the Mokra Gora area, western Serbia. Vesnik, Geologija, hidrogeologija i inženjerska geologija 45, 4754.Google Scholar
Banjac, N (2000) Contribution to the Upper Cretaceous stratigraphy in western Serbia (Postenje Stream locality – Mokra Gora). Vesnik, Geologija, hidrogeologija i inženjerska geologija 50, 7582.Google Scholar
Banjac, N, Bandel, K and Kiel, S (2007) Cassiopid gastropods from the Cretaceous of western Serbia. Annales Géologiques de la Péninsule Balkanique 68, 6171.CrossRefGoogle Scholar
Banjac, N, Jovanović, D, Dulić, I and Ljubović-Obradović, D (2008) The Albian–Cenomanian Kotroman Formation of Mokra Gora (western Serbia). Annales Géologiques de la Péninsule Balkanique 69, 31–8.CrossRefGoogle Scholar
Belak, M, Pamić, J, Kolar-Jurkovšek, T, Peckay, Z and Karan, D (1995) The Alpine regional metamorphic complex of Medvednica (NW Croatia). Proceedings of the First Croatian Geological Congress, Opatija 1, 6770 (in Croatian).Google Scholar
Bernoulli, D and Laubscher, H (1972) The palinspastic problem of the Hellenides. Eclogae Geologicae Helvetiae 65, 107–18.Google Scholar
Blanchet, R (1966) Sur l’âge tithonique-éocrétacé d’un flysch des Dinarides internes en Bosnie: le flysch de Vranduk (Yougoslavie). Compte Rendu sommaire des Séances de la Société géologique de France 10, 401–3.Google Scholar
Blanchet, R (1968) Sur l’extension du flysch tithonique-éocrétacé en Bosnie centrale (Yougoslavie). Compte Rendu sommaire des Séances de la Société géologique de France 3, 97–8.Google Scholar
Blanchet, R (1970) Données Nouvelles sur le flysch bosniaque: la region de Banja Luka, Bosnie septentrionale, Yougoslavie. Bulletin de la Société géologique de France 12/4, 659–63.CrossRefGoogle Scholar
Blanchet, R (1975) De l’Adriatique au Bassin pannonique: essai d’un modèle de chaîne alpine. Mémoires de la Société géologique de France 120, 172.Google Scholar
Blanchet, R, Cadet, J-P, Charvet, J and Rampnoux, J-P (1969) Sur l’existence d’un important domaine de flysch tithonique-crétacé inférieur en Yougoslavie: l’unité du flysch bosniaque. Bulletin de la Société géologique de France 11, 871–80.CrossRefGoogle Scholar
Blanchet, R, Durand Delga, M, Moullade, M and Sigal, J (1970) Contribution à l’étude du Crétacé des Dinarides internes: la région de Maglaj, Bosnie (Yougoslavie). Bulletin de la Société géologique de France 12, 1003–9.CrossRefGoogle Scholar
Bonev, N, Marchev, P, Moritz, R and Collings, D (2015) Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U–Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks. Gondwana Research 27, 760–75.CrossRefGoogle Scholar
Borojević Šoštarić, S, Palinkaš, AL, Neubauer, F, Cvetković, V, Bernroider, M and Genser, J (2014) The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: new evidence for the one-ocean model for the Balkan ophiolites. Lithos 192–195, 3955. doi: 10.1016/j.lithos.2014.01.011.CrossRefGoogle Scholar
Bortolotti, V, Carras, N, Chiari, M, Fazzuoli, M, Marcucci, M, Photiades, A and Principi, G (2003) The Argolis peninsula in the palaeogeographic and geodynamic frame of the Hellenides. Ofioliti 28, 7994.Google Scholar
Bortolotti, V, Carras, N, Chiari, M, Fazzuoli, M, Photiades, A and Principi, G (2004) Sedimentary evolution of the Upper Jurassic Zyghosti platform, Kozani, Northern Greece. In Proceedings of the International Symposium on Earth System Sciences (ISES) 2004, Istanbul, Turkey, September 8–10, 2004, pp. 705–12.Google Scholar
Bortolotti, V, Chiari, M, Marroni, M, Pandolfi, L, Principi, G and Saccani, E (2013) The geodynamic evolution of the ophiolites from Albania and Greece, Dinaric-Hellenic belt: one, two or more oceanic basins? International Journal of Earth Sciences 102, 783811.CrossRefGoogle Scholar
Bortolotti, V, Ficcarelli, G, Manetti, P, Passerini, P, Pirini-Radrizzani, C and Torre, D (1971) Studies on mafic and ultramafic rocks, I. A Jurassic sequence on the top of Zlatibor ultramafic Massif (Jugoslavia). Bollettino della Società Geologica Italiana 90, 415–28.Google Scholar
Bortolotti, V, Marroni, M, Pandolfi, L and Principi, G (2005) Mesozoic to Tertiary tectonic history of the Mirdita ophiolites, northern Albania. In Evolution of Ophiolites in Convergent and Divergent Plate Boundaries (eds Dilek, Y, Ogawa, Y, Bortolotti, V and Spadea, P). The Island Arc 14, 471–93.CrossRefGoogle Scholar
Bragina, LG, Bragin, NY, Djerić, N and Gajić, V (2014) Late Cretaceous radiolarians and age of flyschoid sediments in the Struganik Section (Western Serbia). Stratigraphy and Geological Correlation 22, 202–18.CrossRefGoogle Scholar
Brlek, M, Balen, D and Bermanec, V (2010) Alkali feldspar microtextures from Pogari formation granite pebbles (Middle Bosnia). In 4th Croatian Geological Congress, Šibenik 2010, Abstracts Book, pp. 143–4.Google Scholar
Burchette, TP and Wright, VP (1992) Carbonate ramp depositional systems. Sedimentary Geology 79, 357.CrossRefGoogle Scholar
Burg, J-P (2012) Rhodope: from Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. In The Geology of Greece (eds Skourtsos, E and Lister, GS). Journal of the Virtual Explorer 42, paper 1. doi: 10.3809/jvirtex.2011.00270.CrossRefGoogle Scholar
Cadet, J-P (1968) Sur l’age de flyschs de la haute vallée de la Neretva (région de Ulog, Bosnie Yougoslavie). Compte Rendu sommaire des Séances de la Société géologique de France 4, 118–20.Google Scholar
Cadet, J-P and Sigal, J (1969) Sur la stratigraphie et l’extension du flysch éocretacé en Bosnie Hercégovine méridionale. Compte Rendu sommaire des Séances de la Société géologique de France 2, 52–3.Google Scholar
Carras, N, Conrad, MA and Radoičić, R (2006) Salpingoporella, a common genus of Mesozoic Dasycladales (calcareous green algae). Revue de Paléobiologie 25, 457517.Google Scholar
Carras, N, Fazzuoli, M and Photiades, A (2004) Transition from carbonate platform to pelagic deposition Mid Jurassic–Late Cretaceous, Vourinos Massif, northern Greece. Rivista Italiana di Paleontologia e Stratigrafia 110, 345–55.Google Scholar
Carras, N and Tselepidis, V (2001) Stratigraphy of the Alpine formations of the Parnassus zone and of some allochthonous sequences in the Distomon area (Boeotia, Greece). In The Parnassus Zone, Central Greece (eds Solakius, N and Kati, M), pp. 1736. Meddelanden Fran Lunds Universitets, Geografiska Institutioner, Avhandlingar 139.Google Scholar
Celet, P, Clément, B and Ferrière, J (1976) La zone béotienne en Grèce: implications paléogéographiques et structurales. Eclogae Geologicae Helvetiae 69, 577–99.Google Scholar
Charvet, J (1967) Sur un jalon de flysch tithonique-éocrétacé au Nord de Sarajevo (Bosnie). Compte Rendu sommaire de la Société géologique de France 8, 371–2.Google Scholar
Charvet, J (1970) Aperçu géologique des Dinarides aux environs du meridian de Sarajevo. Bulletin de la Société géologique de France 12, 9861002.CrossRefGoogle Scholar
Charvet, J (1978) Essai sur un orogène alpin: géologie des Dinarides au niveau de la transversale de Sarajevo (Yougoslavie). Publications de la Société géologique du Nord 2, 1554.Google Scholar
Chiari, M, Djerić, N, Garfagnoli, F, Hrvatović, H, Krstić, M, Levi, N, Malasoma, A, Marroni, M, Menna, F, Nirta, G, Pandolfi, L, Principi, G, Saccani, E, Stojadinović, U and Trivić, B (2011) The geology of the Zlatibor-Maljen area (western Serbia): a geotraverse across the ophiolites of the Dinaric-Hellenic collisional belt. Ofioliti 36, 139–66.Google Scholar
Ćirić, B (1958) Geologie des Gebietes fon Dragačevo (Westserbien). Glasnik Prirodnjačkog muzeja, Serija A 9, 5159 (in Serbian with German summary).Google Scholar
Clément, B (1971) Découverte d’un flysch éocrétacé en Béotie (Grèce continentale). Comptes Rendus de l’Académie des Séances de Paris 272, 791–2.Google Scholar
Cohen, KM, Finney, SC, Gibbard, PL and Fan, JX (2013; updated 2019/5) The ICS International Chronostratigraphic Chart. Episodes 36, 199204.CrossRefGoogle Scholar
Crnjaković, M (1979) Sedimentation of transgressive Senonian in Southern Mountain Medvednica. Geološki Vjesnik 32, 8195.Google Scholar
Crnjaković, M (1989) Lower Cretaceous shallow marine deposits in Mt. Medvednica. Acta Geologica Zagreb 19, 6193 (in Croatian with English summary).Google Scholar
Csontos, L, Gerzina, N, Hrvatović, H, Schmid, S and Tomljenović, B (2003) Structure of the Dinarides: a working model. Annales Universitatis Budapestinensis, Sectio Geologica 35, 143–44.Google Scholar
Cvetković, V, Prelević, D and Schmid, SM (2016) Geology of south-eastern Europe. In Mineral and Thermal Waters of Southeastern Europe (ed. Papić, P), pp. 129. Cham: Springer International Publishing Switzerland.Google Scholar
Devidé-Nedéla, D, Babić, L and Zupanič, J (1982) Mastrihtska starost fliša Vivodine u Žumberku i kod Ozlja (zapadna Hrvatska) na temelju planktonskih foraminifera. Acta Geologica Zagreb 35, 2136 (in Croatian with French summary).Google Scholar
Dimitrijević, MD (1982) Dinarides: an outline of the tectonics. Earth Evolution Sciences 1, 423.Google Scholar
Dimitrijević, MD (1997) Geology of Yugoslavia. Belgrade: Geoinstitut-Barex-GEMINI, 197 pp.Google Scholar
Dimitrijević, MD (2001) Dinarides and the Vardar Zone: a short review of the geology. Acta Vulcanologica 13, 18.Google Scholar
Dimitrijević, MN and Dimitrijević, MD (1987) The Titovo-Mitrovica Flysch. In The Turbiditic Basins of Serbia (eds Dimitrijević, MN and Dimitrijević, MD), pp. 2564. Serbian Academy of Sciences and Arts Department of Natural and Mathematical Sciences 61.Google Scholar
Dimitrijević, MN and Dimitrijević, MD (2009) The Lower Cretaceous paraflysch of the Vardar Zone: composition and fabric. Geoloski anali Balkanskog poluostrva 70, 921.CrossRefGoogle Scholar
Dimitrijević, MN, Ljubović-Obradović, D and Dimitrijević, MD (1996) Upper Cretaceous of Ravni Domain. Belgrade Geoinstitute Special Publication 18, 7584 (in Serbian).Google Scholar
Dimo-Lahitte, A, Monié, P and Vergély, P (2001) Metamorphic soles from the Albanian ophiolites: petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20, 7896.CrossRefGoogle Scholar
Djerić, N, Gerzina, N, Gajić, V and Vasić, N (2009) Early Senonian radiolarian microfauna and biostratigraphy from the Western Vardar Zone (Western Serbia). Geologica Carpathica 60, 3541.CrossRefGoogle Scholar
Djerić, N, Gerzina, N and Schmid, S (2007) Age of the Jurassic radiolarian chert formation from the Zlatar Mountain (SW Serbia). Ofioliti 32, 101–8.Google Scholar
Drakulić, D and Dedić, L (1963) Structural composition of Upper Cretaceous sediments of Mokra Gora and Beli Rzav. Tehnika 18/10, 230–36.Google Scholar
Fazzuoli, M, Menna, F, Nirta, G, Carras, N and Principi, G (2008) The Cretaceous transgression in the Dinaric-Hellenic orogen. Rendiconti della Società Geologica Italiana 1, 77–9.Google Scholar
Federal Geological Survey of SRF Yugoslavia (1970) Geologic Map of the Federal Socialist Republic of Yugoslavia, 1:500.000. Beograd: Federal Geological Institute.Google Scholar
Ferrière, J (1982) Paléogéographies et tectoniques superposées dans les Hellénides internes au niveau de l’Othrys et du Pelion (Grèce). Société Géologique du Nord 8, 970.Google Scholar
Ferrière, J, Chanier, F and Ditbanjong, P (2012) The Hellenic ophiolites: eastward or westward obduction of the Maliac Ocean, a discussion. International Journal of Earth Sciences 101, 1559–80.CrossRefGoogle Scholar
Filipović, I, Marković, B, Pavlović, Z, Rodin, V and Marković, O (1978) Osnovna geološka karta SFRJ 1:100.000, sheet Gornji Milanovac, explanatory notes. Belgrade:Federal Geological Survey (in Serbian).Google Scholar
Fotić, V (1962) Geological composition and tectonic structure of the Mokra Gora Basin with special regards to the oolitic iron ore. Vesnik-Geologija (A) 22/23, 117–29 (in Serbian).Google Scholar
Gardin, S, Kici, V, Marroni, M, Mustafa, F, Pandolfi, L, Pirdini, A and Xhomo, A (1996) Litho- and biostratigraphy of the Firza Flysch, ophiolite Mirdita Nappe, Albania. Ofioliti 21, 4754.Google Scholar
Gawlick, H-J, Frisch, W, Hoxha, L, Dumitrica, P, Krystyn, L, Lein, R, Missoni, S and Schlagintweit, F (2008) Mirdita zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. International Journal of Earth Sciences 97, 865–81.CrossRefGoogle Scholar
Gawlick, H-J and Missoni, S (2019) Middle–Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine-Carpathian-Dinaridic Mountain Range. Gondwana Research 74, 144–72. doi: 10.1016/j.gr.2019.03.003.CrossRefGoogle Scholar
Gawlick, H-J, Missoni, S, Sudar, MN, Gorican, S, Lein, R, Stanzel, AI and Jovanović, D (2017a) Open-marine Hallstatt Limestones reworked in the Jurassic Zlatar Mélange (SW Serbia): a contribution to understanding the orogenic evolution of the Inner Dinarides. Facies 63, 29. doi: 10.1007/s10347-017-0510-3.CrossRefGoogle Scholar
Gawlick, H-J, Missoni, S, Suzuki, H, Lein, R, Sudar, M and Jovanović, D (2016) Triassic radiolarite and carbonate components from a Jurassic ophiolitic mélange (Dinaridic Ophiolite Belt). Swiss Journal of Geosciences 109, 473–94.CrossRefGoogle Scholar
Gawlick, H-J, Sudar, MN, Missoni, S, Suzuki, H, Lein, R and Jovanović, D (2017b) Triassic–Jurassic geodynamic history of the Dinaridic Ophiolite Belt (Inner Dinarides, SW Serbia). Journal of Alpine Geology 55, 1167.Google Scholar
Haq, BU (2014) Cretaceous eustasy revisited. Global and Planetary Change 113, 4458.CrossRefGoogle Scholar
Hosseini, S, Conrad, MA, Clavel, B and Carras, N (2016) Berriasian–Aptian shallow water carbonates in the Zagros fold-thrust belt, SW Iran: integrated Sr-isotope dating and biostratigraphy. Cretaceous Research 57, 257–88.CrossRefGoogle Scholar
Hrvatović, H (1999) Geološki vodić kroz Bosnu i Hercegovinu. Sarajevo: Zavod za Geologiju, 203 pp.Google Scholar
Hrvatović, H (2006) Geological Guidebook through Bosnia and Herzegovina. Sarajevo:Geological Survey of Bosnia and Herzegovina, 162 pp.Google Scholar
Husinec, A and Jelaska, V (2006) Relative sea-level changes recorded on an isolated carbonate platform: Tithonian to Cenomanian succession, southern Croatia. Journal of Sedimentary Research 76, 1120–36.CrossRefGoogle Scholar
Ilić, A, Neubauer, F and Handler, R (2005) Late Paleozoic–Mesozoic tectonics of the Dinarides revisited: implications from 40Ar/39Ar dating of detrital white micas. Geology 33, 233–6.CrossRefGoogle Scholar
Jacobshagen, V (1986) Geologie von Griechenland. Beitraege zur Regionalen Geologie der Erde. Berlin-Stuttgart: Gerbrueder Borntraeger, 363 pp.Google Scholar
Jacobshagen, V and Wallbrecher, E (1984) Pre-Neogene nappe structure and metamorphism of the North Sporades and the southern Pelion peninsula. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, JE and Robertson, AHF), pp. 591602. Geological Society of London, Special Publication no. 17.Google Scholar
Jenkyns, HC (1980) Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Jenkyns, HC (1991) Impact of Cretaceous sea-level rise and anoxic events in the Mesozoic carbonate platform of Yugoslavia. American Association of Petroleum Geologists Bulletin 75, 1007–17.Google Scholar
Jež, J, Otoničar, B, Fuček, L and Ogorelec, B (2011) Late Cretaceous sedimentary evolution of a northern sector of the Adriatic Carbonate Platform (Matarsko Podolje, SW Slovenia). Facies 57, 447–68.CrossRefGoogle Scholar
Jones, CE and Jenkyns, HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Sciences 301, 112–49.Google Scholar
Jovanović, R (1961) Contribution to better understanding of domain and Mesozoic facies of “Internal Dinaride Zone”. In NR BiH, III Kongres geologa Jugoslav, Titograd, pp. 149–76 (in Serbian).Google Scholar
Karamata, S (2006) The geodynamical framework of the Balkan Peninsula: its origin due to the approach, collision and compression of Gondwana and Eurasian units. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, AHF and Mountrakis, D), pp. 155–78. Geological Society of London, Special Publication no. 260.Google Scholar
Karamata, S, Olujić, J, Protić, L, Milovanović, D, Vujnović, L, Popević, A, Memović, E, Radovanović, Z and Resimić-Sarić, K (2000) The western belt of the Vardar zone – the remnant of a marginal sea. In Geology and Metallogeny of the Dinarides and the Vardar Zone (eds Karamata, S and Janković, S), pp. 131–5. Banja Luka: Collections and Monographs of the Academy of Sciences and Arts of the Republic of Serbia 1.Google Scholar
Kilias, A, Frisch, W, Avgerinas, A, Dunkl, I, Falalakis, G and Gawlick, H-J (2010) Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Austrian Journal of Earth Sciences 103, 428.Google Scholar
Korbar, T (2009) Orogenic evolution of the External Dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth Science Reviews 96, 296312.CrossRefGoogle Scholar
Lanphere, M, Coleman, RG, Karamata, S and Pamić, J (1975) Age of amphibolites associated with Alpine peridotites in the Dinaride ophiolite zone, Yugoslavia. Earth and Planetary Science Letters 26, 271–6.CrossRefGoogle Scholar
Liati, A, Gebauer, D and Fanning, MC (2004) The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U–Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology 207, 171–88.CrossRefGoogle Scholar
Loczy, L (1924) Geologische Studien im westlichen Serbien. Berlin: Walter de Gruyter and Co., 146 pp.Google Scholar
Loeblich, AR Jr and Tappan, H (1988) Foraminiferal Genera and their Classification. Vol. I and II. New York: Van Nostrand Reinhold Co.CrossRefGoogle Scholar
Lužar-Oberiter, B, Mikes, T, Dunkl, I, Babić, L and Eynatten, H (2012) Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia). Swiss Journal of Geosciences 105, 377–99.CrossRefGoogle Scholar
Maync, W (1953) Hemicyclammina sigali n.gen. n.sp. from the Cenomanian of Algeria. Contributions from the Cushman Foundation for Foraminiferal Research 4, 148–50.Google Scholar
Meinhold, G, Kostopoulos, D, Reischmann, T, Frei, D and BouDagher-Fadel, MK (2009) Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 199225.CrossRefGoogle Scholar
Mikes, T, Christ, D, Petri, R, Dunkl, I, Frei, D, Baldi-Beke, M, Reitner, J, Wemmer, K, Hrvatović, H and von Eynatten, H (2008) Provenance of the Bosnian Flysch. Swiss Journal of Geosciences 101, 3154.CrossRefGoogle Scholar
Milovanović, B (1933) Contribution to the geology of western Serbia – Upper Cretaceous of the Mokra Gora Basin. Geološki anali Balkanskoga poluostrva 11, 132–60 (in Serbian).Google Scholar
Milovanović, D (1984) Petrology of low-grade metamorphic rocks of the middle part of the Drina-Ivanjica Palaeozoic. Glasnik Prirodnjačkog Muzeja u Beogradu (Ser. A) 39, 13139. (in Serbian with English summary).Google Scholar
Missoni, S, Gawlick, H-J, Sudar, MN, Jovanović, D and Lein, R (2012) Onset and demise of the Wetterstein Carbonate Platform in the mélange areas of the Zlatibor Mountain (Sirogojno, SW Serbia). Facies 58, 95111.CrossRefGoogle Scholar
Mojsilović, S, Baklajić, D, Đoković, I and Avramović, V (1978) Osnovna geološka karta SFRJ 1:100.000, sheet Titovo Užice, explanatory notes. Belgrade: Federal Geological Survey (in Serbian with English summary).Google Scholar
Neubauer, F, Pamić, F, Dunkl, I, Handler, R and Majer, V (2003) Exotic granites in the Cretaceous Pogari Formation overstepping the Dinaric Ophiolite Zone melange in Bosna. Ann University Science, Budapest 35, 133–4.Google Scholar
Nirta, G, Moratti, G, Piccardi, L, Montanari, D, Carras, N, Catanzariti, R, Chiari, M and Marcucci, M (2018) From obduction to continental collision: new data from Central Greece. Geological Magazine 155, 377421.CrossRefGoogle Scholar
Nirta, G, Moratti, G, Piccardi, L, Montanari, D, Catanzariti, R, Carras, N and Papini, M (2015) The Boeotian flysch revisited: new constraints on ophiolite obduction in central Greece. Ofioliti 40, 107–23.Google Scholar
Obradović, J and Goričan, Š (1988) Siliceous deposits in Yugoslavia: occurrences, types, and ages. In Siliceous Deposits of the Tethys and Pacific Regions (eds Hein, JR and Obradović, J), pp. 5164. New York: Springer-Verlag.Google Scholar
Obradović, J, Milovanović, D and Vasić, N (1986) Siliceous rocks from Diabase-chert Formation, Point No. 4, Locality: Nova Varoš Bistrica. In Guide-Book for the 3rd International Conference on Siliceous Deposits, Yugoslavia, September 1986 (Yugoslav Committee for IGCP, IGCP Project 187 “Siliceous deposits”), pp. 5862. Belgrade: Yugoslav Committee for IGCP.Google Scholar
Okrusch, M, Seidel, E, Kreuzer, H and Harre, W (1978) Jurassic age of metamorphism at the base of the Brezovica peridotite (Yugoslavia). Earth and Planetary Science Letters 39, 291–7.CrossRefGoogle Scholar
Olujić, J, Pamić, J and Kapeler, I (1987) Osnovna geološka karta SFRJ 1:100.000, sheet Višegrad, explanatory notes. Belgrade: Federal Geological Survey.Google Scholar
Pamić, J (2000) Radiolarite formation. In Pancardi 2000 Fieldtrip Guidebook (eds Pamić, J and Tomljenović, B), pp. 70. Vijesti Hrvatskog geolośkog druśtva 37(2).CrossRefGoogle Scholar
Pamić, J, Balogh, K, Hrvatović, H, Balen, D, Jurković, I, Palinkaš, L (2004) K–Ar and Ar–Ar dating of the Palaeozoic metamorphic complex from the Mid-Bosnian Schist Mts., Central Dinarides, Bosnia and Hercegovina. Mineralogy and Petrology 82, 6579.CrossRefGoogle Scholar
Pamić, J, Gušić, I and Jelaska, V (1998) Geodynamic evolution of the Central Dinarides. Tectonophysics 297, 251–68.CrossRefGoogle Scholar
Pamić, J, Tomljenović, B and Balen, D (2002) Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview. Lithos 65, 113–42.CrossRefGoogle Scholar
Papanikolaou, D (1997) The tectonostratigraphic terranes of the Hellenides. Annales Géologiques des Pays Helléniques 37, 495514.Google Scholar
Papanikolaou, D (2009) Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108, 262–80.CrossRefGoogle Scholar
Pchelintsev, FV (1953) Gastropod Fauna of the Upper Cretaceous Deposits of Transcaucasus and Middle Asia. Moskva–Leningrad:Akademiâ Nauk SSSR, 391 pp. (in Russian).Google Scholar
Pejović, D and Radoičić, R (1971) Über die Stratigraphie die Kreide der Mokra Gora. Bulletin Scientifique A 16, 138.Google Scholar
Petkovic, V (1925) Historical Geology (Stratigraphy). Belgrade: Državna štamparija Kraljevine Srba Hrvata i Slovenaca, 365 pp. (in Serbian).Google Scholar
Peza, LH and Marku, D (2002) Lower Cretaceous in the Munella Mountains (Mirdita Zone, northeastern Albania). Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommission 15, 365–72.Google Scholar
Photiades, A, Carras, N, Bortolotti, V, Fazzuoli, M and Principi, G (2007) The Late Early Cretaceous transgression on the laterites in Vourinos and Vermion massifs (Western Macedonia, Greece). Bulletin of the Geological Society of Greece 40, 182–90.CrossRefGoogle Scholar
Porkolab, K, Köver, S, Benko, Z, Heja, GH, Fialowski, M, Soos, B, Gerzina Spajić, N, Đerić, N and Fodor, L (2019) Structural and geochronological constraints from the Drina-Ivanjica thrust sheet (Western Serbia): implications for the Cretaceous-Paleogene tectonics of the Internal Dinarides. Swiss Journal of Geosciences 112, 217–34. doi: 10.1007/s00015-018-0327-2.CrossRefGoogle Scholar
Radoičić, R (1984) The age of sediments overlaying Ni–Fe deposits in the inner Dinarides (Western Serbia, Kosovo, Macedonia). Radovi Geoinstituta 17, 133–6 (in Serbian).Google Scholar
Radoičić, R (1995) Contribution to the study of Cretaceous biostratigraphy of Zlatibor Mountain. Radovi Geoinstituta 31, 1730 (in Serbian with English summary).Google Scholar
Radoičić, R, Radulović, V, Rabrenović, D and Radulović, B (2010) The age of the brachiopod limestones from Guča, western Serbia. Geološki anali Balkanskoga poluostrva 71, 7393.CrossRefGoogle Scholar
Radoičić, R and Schlagintweit, F (2007) Neomeris mokragorensis sp. nov. (calcareous alga, Dasycladales) from the Cretaceous of Serbia, Montenegro and the Northern Calcareous Alps, (Gosau Group, Austria). Geološki anali Balkanskoga poluostrva 68, 3951.CrossRefGoogle Scholar
Radovanović, Z, Popović, D, Jovanović, R and Jovanović, D (1997) Granites of Straža and their sedimentary roof (SW Serbia). Geologija 40, 241–5.CrossRefGoogle Scholar
Rampnoux, J-P (1969) A propos du flysch du ‘Durmitor’ (Monténégro, Yougoslavie). Compte Rendu sommaire des Séances de la Société géologique de France 2, 54–5.Google Scholar
Robertson, AHF (2012) Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. International Geology Review 54, 373454.CrossRefGoogle Scholar
Robertson, AHF, Clift, PD, Degnan, PJ and Jones, G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Robertson, AHF and Dixon, JE (1984) Introduction: aspects of the geological evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, JE and Robertson, AHF), pp. 174. Geological Society of London, Special Publication no. 17.Google Scholar
Robertson, AHF and Karamata, S (1994) The role of subduction-accretion processes in the tectonic evolution of the Mesozoic Tethys in Serbia. Tectonophysics 234, 7394.CrossRefGoogle Scholar
Robertson, AHF, Karamata, S and Šarić, K (2009) Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. In Ophiolites and Related Geology of the Balkan Region (eds Robertson, AHF, Karamata, S and Šarić, K). Lithos 108, 136.CrossRefGoogle Scholar
Robertson, AHF and Shallo, M (2000) Mesozoic–Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics 316, 197214.CrossRefGoogle Scholar
Romanov, LF (1976) Mesozoic Variegated Rocks of the Dniester-Prut Interfluve. Kishinev: Akademiya Nauk Moldavskoi SSR, 208 pp. (in Russian).Google Scholar
Sartorio, D and Venturini, S (1988) Southern Tethys Biofacies. Milan: Agip.Google Scholar
Schefer, S, Cvetković, V, Fügenschuh, B, Kounov, A, Ovtcharova, M, Schaltegger, U and Schmid, SM (2010a) Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula. International Journal of Earth Sciences 100, 1181–206.CrossRefGoogle Scholar
Schefer, S, Egli, D, Missoni, S, Bernoulli, D, Fügenschuh, B, Gawlick, H-J, Jovanović, D, Krystin, L, Lein, R, Schmid, SM and Sudar, MN (2010b) Triassic metasediments in the internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, paleogeographic and tectonic significance. Geologica Carpathica 61/2, 89109. doi: 10.2478/v10096-010-0003-6CrossRefGoogle Scholar
Schenker, FL, Fellin, MG and Burg, J-P (2015) Polyphase evolution of Pelagonia (northern Greece) revealed by geological and fission-track data. Solid Earth 6, 285302.CrossRefGoogle Scholar
Schlagintweit, F, Gawlick, H-J, Lein, R, Missoni, S and Hoxha, L (2012) Onset of an Aptian carbonate platform on top of a Middle–Late Jurassic radiolaritic-ophiolithic mélange in the Mirdita Zone of Albania. Geologia Croatica 65, 2940.CrossRefGoogle Scholar
Schlagintweit, F, Gawlick, H-J, Missoni, S, Hoxha, L, Lein, R and Frisch, W (2008) The eroded Late Jurassic Kurbnesh carbonate platform in the Mirdita Ophiolite Zone of Albania and its bearing on the Jurassic orogeny of the Neotethys realm. Swiss Journal of Geosciences 101, 125–38.CrossRefGoogle Scholar
Schmid, SM, Bernoulli, D, Fügenschuh, B, Matenco, L, Schefer, S, Schuster, R, Tischler, M and Ustaszewski, K (2008) The Alpine-Carpathian-Dinaride orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences 101, 139–83.CrossRefGoogle Scholar
Schmid, SM, Fügenschuh, B, Kounov, A, Maţenco, L, Nievergelt, P, Oberhänsli, R, Pleuger, J, Schefer, S, Schuster, R, Tomljenović, B, Ustaszewski, K and van Hinsbergend, DJJ (2020) Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research 78, 308–74.CrossRefGoogle Scholar
Schuller, V, Frisch, W, Danisik, M, Dunkl, I and Melinte, MC (2009) Upper Cretaceous Gosau deposits of the Apuseni Mountains (Romania) – similarities and differences to the Eastern Alps. Austrian Journal of Earth Sciences 102, 133–45.Google Scholar
Simon, DD and Jenkyns, HC (1999) Carbon-isotope stratigraphy of shallow-water limestones and implications for the timing of Late Cretaceous sea-level rise and anoxic events (Cenomanian–Turonian of the peri-Adriatic carbonate platform, Croatia). Eclogae Geologicae Helvetiae 92, 163–70.Google Scholar
Sissingh, W (1977) Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw 56, 3765.Google Scholar
Sladic-Trifunovic, M (1998) On the Senonian rudist-bearing sediments in Yugoslavia. Geobios 22, 371–84.CrossRefGoogle Scholar
Smith, AG (2006) Tethyan ophiolite emplacement, Africa to Europe motions, and Atlantic spreading. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, AHF and Mountrakis, D), pp. 1134. Geological Society of London, Special Publication no. 260.Google Scholar
Spray, JG, Bébien, J, Rex, DC and Roddick, JC (1984) Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, JE and Robertson, AHF), pp. 619–27. Geological Society of London, Special Publication no. 17.Google Scholar
Stampfli, GM and Borel, G (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (eds Cavazza, W, Roure, FM, Spakman, W, Stampfli, GM and Ziegler, PA), pp. 5380. Berlin and Heidelberg: Springer.CrossRefGoogle Scholar
Summerfield, MA (1983) Silcrete as a paleoclimatic indicator: evidence from Southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 41, 6579.CrossRefGoogle Scholar
Trivić, B, Cvetković, V, Smiljanić, B and Gajić, R (2010) Deformation pattern of the Palaeozoic units of the Tethyan suture in the central Balkan Peninsula: a new insight from study of the Bukulja–Lazarevac Palaeozoic unit (Serbia). Ofioliti 35, 2132.Google Scholar
Ustaszewski, K, Kounov, A, Schmid, SM, Schaltegger, U, Krenn, E, Frank, W and Fügenschuh, B (2010) Evolution of the Adria–Europe plate boundary in the northern Dinarides: from continent–continent collision to back‐arc extension. Tectonics 29, TC6017. doi: 10.1029/2010TC002668CrossRefGoogle Scholar
Ustaszewski, K, Schmid, SM, Lugovic, B, Schuster, R, Schaltegger, U, Bernoulli, D, Hottinger, L, Kounov, A, Fügenschuh, B and Schefer, S (2009) Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates. Lithos 108, 106–25.CrossRefGoogle Scholar
van Gelder, I, Matenco, L, Willingshofer, E, Tomljenović, B, Andriessen, PAM, Ducea, MN, Beniest, A and Gruić, A (2015) The tectonic evolution of a critical segment of the Dinarides-Alps connection: kinematic and geochronological inferences from the Medvednica Mountains, NE Croatia. Tectonics 34, 1952–78. doi: 10.1002/2015TC003937.CrossRefGoogle Scholar
Verneuil, Ede, and Collomb, E (1853) Coup d’oeil sur la constitution géologique de quelques provinces de l’Éspagne. Bulletin de la Société géologique de France 10, 61147.Google Scholar
Vishnevskaya, V, Djerić, N and Zakariadze, GS (2009) New data on Mesozoic Radiolaria of Serbia and Bosnian and implications for age and evolution of oceanic volcanics of Central and Northern Balkanides. Lithos 108, 72105.CrossRefGoogle Scholar
Vlahović, I, Tišljar, J, Velić, I and Matičec, D (2005) Evolution of the Adriatic Carbonate Platform: palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 333–60.CrossRefGoogle Scholar
Willingshofer, E, Neubauer, F and Cloetingh, S (1999) The significance of Gosau-type basins for the Late Cretaceous history of the Alpine-Carpathian Belt. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24, 687–95.CrossRefGoogle Scholar
Zelic, M, Marroni, M, Pandolfi, L and Trivić, B (2010) Tectonic setting of the Vardar suture zone (Dinaric-Hellenic belt): the example of the Kopaonik area (southern Serbia). Ofioliti 35, 4969.Google Scholar
Žujović, J (1893) Geology of Serbia, Part 1. Belgrade: Srpska Kraljevska akademija (in Serbian), 334 pp.Google Scholar