Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T04:57:17.664Z Has data issue: false hasContentIssue false

Detrital zircon geochronology of pre-Cretaceous strata: tectonic implications for the Jiangnan Orogen, South China

Published online by Cambridge University Press:  20 February 2014

JINBAO SU
Affiliation:
School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
SHUWEN DONG*
Affiliation:
Chinese Academy of Geological Sciences, Beijing, 100037, China
YUEQIAO ZHANG
Affiliation:
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
YONG LI
Affiliation:
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
XUANHUA CHEN
Affiliation:
Chinese Academy of Geological Sciences, Beijing, 100037, China
JIANJUN CUI
Affiliation:
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
*
Author for correspondence: swdong@cags.ac.cn

Abstract

Fifteen sandstone samples taken from pre-Cretaceous strata of the Yangtze Block are analysed to constrain the evolution of the South China Block, especially the assembly between the Yangtze and Cathaysia blocks. The results show that the maximum depositional age of the Neoproterozoic Lengjiaxi Group adjacent to the Cathaysia Block is c. 830 Ma, differing from that of the Kunyang and Dahongshan groups (> 960 Ma) on the southwestern margin of the Yangtze Block. The detrital zircons from Palaeozoic samples from the Yangtze Block have similar age populations to those in the Cathaysia Block, and they may originate from the Cathaysia Block according to palaeogeographic, palaeocurrent and former research data. The detrital zircons of Middle–Upper Jurassic sandstones in the southwestern and central Yangtze Block yield dominant age populations at 2.0–1.7 Ga and subordinate groups of 2.6–2.4 Ga, 0.8–0.7 Ga and 0.6–0.4 Ga. The Upper Triassic strata may be derived from the southern Yangtze and North China blocks due to the collisions between the Indosina, South China and North China blocks, whereas the Jurassic sediments may be partly derived from uplift and erosion of the Jiangnan Orogen due to an intracontinental orogeny induced by Pacific subduction towards the Eurasia Plate. The detrital age spectra and provenance data for basement in the South China Block are analysed and compared with each other. The South China Block has affinity with Australia not only in the Columbia supercontinent but also in the Rodinia supercontinent. We infer the existence of an ancient orogen under the western Jiangnan Orogen, which may have occurred during the Columbia age, earlier than the Sibao orogeny. This is supported by seismic profile proof from the SinoProbe.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. L. 2007. New Theory of the Earth. Cambridge: Cambridge University Press, pp. 384.Google Scholar
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22.Google Scholar
Bruguier, O., Lancelot, J. R. & Malavieille, J. 1997. U–Pb dating on single detrital zircon grains from the Triassic Songpan–Ganze flysch (Central China): provenance and tectonic correlations. Earth and Planetary Science Letters 152, 217–31.CrossRefGoogle Scholar
Cawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D. & Windley, B. F. 2009. Accretionary orogens through Earth history. In Earth Accretionary Systems in Space and Time (eds Cawood, P. A. & Kröner, A.), pp. 136. Geological Society of London, Special Publication no. 318.Google Scholar
Charvet, J., Shu, L. S., Shi, Y. S., Guo, L. Z. & Faure, M. 1996. The building of south China: collision of Yangzi and Cathaysia block, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13 (3–5), 223–35.Google Scholar
Chen, J., Foland, K. A., Xing, F. M., Xu, X. & Zhou, T. X. 1991. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathaysia blocks of China. Geology 19, 815–8.Google Scholar
Chen, Z. H., Guo, K. Y., Dong, Y. G., Chen, R., Li, L. M., Liang, Y. H., Li, C. H., Yu, X. M., Zhao, L. & Xing, G. F. 2009. Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: evidence from zircon LA-ICP-MS U–Pb geochronology and geochemistry. Science in China Series D: Earth Sciences 52, 925–39.Google Scholar
Chen, H. D., Hou, M. C., Xu, X. S. & Tian, J. C. 2006. Tectonic evolution and sequence stratigraphic framework in south China during Caledonian. Journal – Chengdu University of Technology 33 (1), 18.Google Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.Google Scholar
Chen, N. S., Liu, R., Sun, M., Li, H. M., He, L., Wang, Q. Y. & Zhang, H. F. 2006. LA-ICPMS U–Pb zircon dating for felsic granulite, Huangtuling area, North Dabieshan: constraints on timing of its protolith and granulite-facies metamorphism, and thermal events in its provenance. Earth Science 31, 294300 (in Chinese with English abstract).Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.Google Scholar
Dewey, J. F. & Burke, K. C. A. 1973. Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. Journal of Geology 81, 683–92.Google Scholar
Duan, L., Meng, Q. R, Zhang, C. L. & Liu, X. M. 2011. Tracing the position of the South China block in Gondwana: U-Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research 19, 141–9.Google Scholar
Evans, D. A. D., Li, Z. X., Kirschvink, J. L. & Wingate, M. T. D. 2000. A high quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research 100, 313–34.Google Scholar
Gan, X., Li, H., Sun, D., Jin, W. & Zhao, F. 1995. A geochronological study on early Proterozoic granitic rocks, southeastern Zhejiang. Acta Petrologica et Mineralogica 14 (1), 18 (in Chinese with English abstract).Google Scholar
Gao, L. Z., Chen, J., Ding, X. Z., Liu, Y. R., Zhang, C. H., Zhang, H., Liu, Y. X., Pang, W. H. & Zhang, Y. H. 2011. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi Groups, northeastern Hunan: constraints on the Wuling Movement. Geological Bulletin of China 30 (7), 1001–8.Google Scholar
Gao, J., Klemd, R., Long, L., Xiong, X. & Qian, Q. 2009. Adakitic signature formed by fractional crystallization: an interpretation for the Neo-Proterozoic metaplagiogranites of the NE Jiangxi ophiolitic mélange belt, South China. Lithos 110, 277–93.CrossRefGoogle Scholar
Gao, S., Lin, W. L. & Qiu, Y. M. 1999. Contrasting geochemical and Sm–Nd isotopic compositions of Archaean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimca et Cosmochimica Acta 63, 2071–88.CrossRefGoogle Scholar
Ge, W. C., Li, X. H., Li, Z. X. & Zhou, H. W. 2001 a. Mafic intrusions in Longsheng area: age and its geological implications. Chinese Journal of Geology 36, 112–8 (in Chinese with English abstract).Google Scholar
Ge, W. C., Li, X. H., Liang, X. R., Wang, R. C., Li, Z. X. & Zhou, H. W. 2001 b. Geochemistry and geological implications of mafic–ultramafic rocks with the age of 825 Ma in Yuanbaoshan–Baotan area of northern Guangxi. Geochemica 30, 123–30 (in Chinese with English abstract).Google Scholar
Gehrels, G. E. 2011. Detrital zircon U–Pb geochronology: current methods and new opportunities. In Recent Advances in Tectonics of Sedimentary Basins (eds Busby, C. & Azor, A.). Hoboken, New Jersey: Wiley–Blackwell.Google Scholar
Greentree, M. R. & Li, Z. X. 2008. The oldest known rocks in south western China: SHRIMP U–Pb magmatic crystallisation age and detrital provenance analysis of the 131 Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences 33, 289302.Google Scholar
Greentree, M. R., Li, Z. X., Li, X. H. & Wu, H. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research 151, 79110.Google Scholar
Grimmer, J. C., Ratschbacher, L., Williams, M. M, Franz, L., Gaitzsch, I., Tichomirowa, M., Hacker, B. R. & Zhang, Y. Q. 2003. When did the ultra-high-pressure rocks reach the surface? A 207Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology 197, 87110.CrossRefGoogle Scholar
Hoffman, F. P. 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga). Geology 17, 135–8.Google Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside out? Science 252, 1409–12.Google Scholar
Hoffman, P. F., Burke, K. C. A. & Dewey, J. F. 1974. Aulacogens and their genetic relation to geosynclines, with a Proterozoic example from the Great Slave Lake, Canada. In Modern and Ancient Geosyncline Sedimentation (eds Dott, R. H. & Shaver, R. H.), pp. 3855. Society of Economic Paleontologists and Mineralogists, Special Publication no. 19.CrossRefGoogle Scholar
Hsü, K. J, Li, J. L, Chen, H. H, Wang, Q. C., Sun, S. & Sengor, A. M. C. 1990. Tectonics of south China: key to understanding west Pacific geology. Tectonophysics 193, 939.Google Scholar
Hu, X., Xu, J., Tong, Z. & Chen, C. 1991. The Precambrian Geology of Southwestern Zhejiang Province. Beijing: Geological Publishing House, pp. 1278 (in Chinese with English abstract).Google Scholar
Huang, J., Ren, J., Jiang, C., Zhang, Z. & Qin, D. 1980. The Geotectonic Evolution of China. Beijing: Scientific Press, 124 pp.Google Scholar
Huang, J. Q., Ren, J. S., Jiang, C. F., Zhang, Z. K. & Qin, D. Y. 1987. Geotectonic Evolution of China. Springer-Verlag, pp. 1203.Google Scholar
Jordan, T. H. 1988. Structure and formation of the continental tectosphere. Journal of Petrology 29 (Special Lithosphere Issue), 1137.Google Scholar
Karlstrom, K. E., Ahall, K. I., Harlan, S. S., Williams, M. L., Mclelland, J. & Geissman, J. W. 2001. Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research 111, 530.Google Scholar
Li, X. H. 1999. U–Pb zircon ages of granites from the southern margin of Yangtze Block: timing of the Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia assembly. Precambrian Research 97, 4357.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat slab subduction model. Geology 35, 179–82.Google Scholar
Li, X. H., Li, Z. X., Ge, W., Zhou, H., Li, W., Liu, Y. & Wingate, M. T. D. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research 122, 4583.Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters 173, 171–81.Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.Google Scholar
Li, W. X., Li, X. H. & Li, Z. X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research 136, 5166.Google Scholar
Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F. & Yang, Y. H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research 174, 117–28.Google Scholar
Li, W. X., Li, X. H., Li, Z. X. & Lou, F. S. 2008. Obduction-type granites within the NE Jiangxi Ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia blocks. Gondwana Research 13, 288301.Google Scholar
Li, X. H., Li, Z. X., Li, W. X. & Wang, Y. J. 2006. Initiation of the Indosinian Orogeny in South China: evidence for a Permian magmatic arc on Hainan Island. Journal of Geology 114, 341–53.Google Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi–Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions. Geological Society of America Bulletin 122, 772–93.Google Scholar
Li, Z. X., Li, X. H., Zhou, H. W. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Zhou, H. W., Liu, Y. & Kinny, P. D. 2002. U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research 113, 135–54.Google Scholar
Li, L. M., Sun, M., Wang, Y., Xing, G., Zhao, G., Cai, K. & Zhang, Y. 2011 a. Geochronological and geochemical study of Palaeoproterozoic gneissic granites and clinopyroxenite xenoliths from NW Fujian, SE China: implications for the crustal evolution of the Cathaysia Block. Journal of Asian Earth Sciences 41, 204–12.Google Scholar
Li, L. M., Sun, M., Wang, Y., Xing, G., Zhao, G., He, Y., He, K. & Zhang, A. 2011 b. U–Pb and Hf isotopic study of detrital zircons from the meta-sedimentary rocks in central Jiangxi Province, South China: implications for the Neoproterozoic tectonic evolution of South China Block. Journal of Asian Earth Sciences 41, 4455.Google Scholar
Li, R., Wan, Y., Cheng, Z., Zhou, J., Li, S., Jin, F., Meng, Q., Li, Z. & Jiang, M. 2005. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth and Planetary Science Letters 231, 279–94.Google Scholar
Li, X., Wang, Y., Zhao, Z. & Chen, D. 1998. SHRIMP U–Pb zircon geochronology for amphibolite from the Precambrian basement in SW Zhejiang and NW Fujian Provinces. Geochimica 27, 327–34 (in Chinese with English abstract).Google Scholar
Li, Z. X., Wartho, J. A., Occhipinti, S., Zhang, C. L., Li, X. H., Wang, J. & Bao, C. M. 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: new mica 40Ar/39Ar dating and SHRIMP U–Pb detrital zircon provenance constraints. Precambrian Research 159, 7994.Google Scholar
Li, Z. X., Zhang, L. H. & Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology 23, 407–10.Google Scholar
Li, X. H., Zhou, G. Q., Zhao, J. X., Fanning, C. M. & Composton, W. 1994. SHRIMP ion microprobe zircon U–Pb age and Sm–Nd isotopic characteristics of the NE Jiangxi ophiolite and its tectonic implications. Chinese Journal of Geochemistry 13, 317–25.Google Scholar
Liu, P., Hsü, H., Yao, S. & Wu, Y. 1994. Atlas of the Lithofacies and Palaeogeography of South China: (Sinian–Triassic). Science Press.Google Scholar
Liu, R., Zhou, H., Zhang, L., Zhong, Z., Zeng, W., Xiang, H., Jin, S., Lu, X. & Li, C. 2009. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: evidence from zircon trace elements, U–Pb and Lu–Hf isotopes. Chinese Science Bulletin 54, 1543–54.Google Scholar
Lucas, S. B., Syme, E. C. & Ashton, K. E. 1999. New perspectives on the Flin Flon Belt, Trans-Hudson orogen, Manitoba and Saskatchewan: an introduction to the special issue on the NATMAP Shield Margin Project, Part 1. Canadian Journal of Earth Sciences 36, 135–40.Google Scholar
Ludwig, K. R. 2003. Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 4, 170.Google Scholar
McMenamin, M. A. S. & McMenamin, D. I. S. 1990. The Emergence of Animals: The Cambrian Breakthrough. New York: Columbia University Press.CrossRefGoogle Scholar
Myers, J. S. 1990. Capricorn Orogen. Memoirs of the Geological Survey of Western Australia 3, 197–8.Google Scholar
Myers, J. S., Shaw, R. D. & Tyler, I. M. 1996. Tectonic evolution of Proterozoic Australia. Tectonics 15 1431–46.Google Scholar
Peng, S. B., Kusky, T. M., Jiang, X. F., Wang, L., Wang, J. P. & Deng, H. 2012. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research 21, 577–94.Google Scholar
Pirajno, F., Occhipinti, S. A. & Swager, C. P. 1998. Geology and tectonic evolution of the Paleoproterozoic Bryah, Padbury and Yerrida Basins (formerly Glengarry Basin), Western Australia: implications for the history of the south-central Capricorn Orogen. Precambrian Research 90, 119–40.Google Scholar
Qiu, Y. M., Gao, S., McNaughton, N. J., Groves, D. I. & Ling, W. L. 2000. First evidence of N3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 11–4.2.0.CO;2>CrossRefGoogle Scholar
Ren, J. S. 1991. On the geotectonics of southern China. Acta Geologica Sinica 4, 111–36.Google Scholar
Rogers, J. J. W. & Santosh, M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research 5, 522.CrossRefGoogle Scholar
Rogers, J. J. W., Unrug, R. & Sultan, M. 1995. Tectonic assembly of Gondwana. Journal of Geodynamics 19, 134.Google Scholar
She, Z. B., Ma, C. Q., Wan, Y. S., Zhang, J. Y., Li, M., Chen, L., Xu, W. J., Li, Y., Ye, L. F. & Gao, J. 2012. An Early Mesozoic transcontinental palaeoriver in South China: evidence from detrital zircon U-Pb geochronology and Hf isotopes. Journal of the Geological Society, London 169, 353–62.Google Scholar
Shu, L. S., Deng, P., Yu, J. H., Wang, Y. B. & Jiang, S. Y. 2008 a. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China. Science in China Series D: Earth Sciences 51, 1053–63.Google Scholar
Shu, L. S., Faure, M., Jiang, S. Y., Yang, Q. & Wang, Y. J. 2006. SHRIMP zircon U–Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China – evidence for a Neoproterozoic orogen, not Late Paleozoic–Early Mesozoic collision. Episodes 29, 244–52.CrossRefGoogle Scholar
Shu, L., Faure, M., Wang, B., Zhou, X. & Song, B. 2008 b. Late Palaeozoic–Early Mesozoic geological features of South China: response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience 340, 151–65.Google Scholar
Shu, L., Faure, M., Yu, J.-H. & Jahn, B. M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research 187, 263–76.Google Scholar
Shu, L. S., Zhou, X. M, Deng, P., Wang, B., Jiang, S. Y., Yu, J. H. & Zhao, X. X. 2009. Mesozoic tectonic evolution of the southeast China Block: new insights from basin analysis. Journal of Asian Earth Sciences 34, 376–91.Google Scholar
Shu, L. S., Zhou, G. Q., Shi, Y. S. & Yin, J. 1994. Study of the high-pressure metamorphic blueschist and its Late Proterozoic age in the Eastern Jiangnan belt. Chinese Science Bulletin 39, 1200–4.Google Scholar
Shui, T. 1987. Continental basement tectonic framework of Southeast China. Science in China (B) 4, 414–22.Google Scholar
Su, J. B., Zhang, Y. Q., Dong, S. W., Chen, X. H., Li, Y. & Cui, J. J. 2013. Intracontinental evolution of western Jiangnan Orogen in Neoproterozoic: insight from granite gravel of Fanjingshan, South China. Acta Geologica Sinica (English Edition) 87 Supp, 315 pp.Google Scholar
Su, J. B., Zhu, W. B., Lu, H. F., Xu, M. J., Yang, W. & Zhang, Z. Y. 2009. Geometry styles and quantification of inversion structures in the Jiyang depression, Bohai Bay Basin, eastern China. Marine and Petroleum Geology 26, 2538.Google Scholar
Su, J. B., Zhu, W. B, Wei, J., Xu, L. M., Yang, Y. F., Wang, Z. Q. & Zhang, Z. Y. 2011. Fault growth and linkage: implication for the tectono-sedimentary evolution in the Chezhen basin of Bohai Bay, eastern China. American Association of Petroleum Geologists Bulletin 95, 126.Google Scholar
Sun, M., Chen, N., Zhao, G. C., Wilde, S. A., Ye, K., Guo, J., Chen, Y. & Yuan, C. 2008. U–Pb Zircon and Sm–Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: implication for the Paleoproterozoic tectonic history of the Yangtze craton. American Journal of Science 308, 469–83.Google Scholar
Sun, K. X., Shen, Y. L. & Liu, G. Q. 1991. The Iron and Copper Deposits of Proterozoic in the Middle of Yunnan. Beijing: Springer, pp. 118.Google Scholar
Sun, T., Zhou, X. M., Chen, P. R., Li, H. M., Zhou, H. Y., Wang, Z. C. & Shen, W. Z. 2005. Mesozoic strongly peraluminous granites from eastern Nanling Mountains Range, southern China: petrogenesis and implications for tectonics. Science in China Series D: Earth Sciences 48, 164–74.Google Scholar
Sun, W. H., Zhou, M. F., Gao, J. F., Yang, Y. H., Zhao, X. F. & Zhao, J. H. 2009. Detrital zircon U–Pb geochronological and Lu–Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Research 172, 99126.Google Scholar
Wan, Y. S., Liu, D. Y., Xu, M. H., Zhuang, J., Song, B., Shi, Y. & Du, L. 2007. SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12, 166–83.Google Scholar
Wang, Y. J., Fan, W. M., Sun, M., Liang, X. Q., Zhang, Y. H. & Peng, T. P. 2007 a. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan province. Lithos 96, 475502.Google Scholar
Wang, Y. J., Fan, W. M., Zhao, G. C., Ji, S. C. & Peng, T. P. 2007 b. Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research 12, 404–16.Google Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research 177, 131–44.Google Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 1–4, 141–58.Google Scholar
Wang, J., Li, X. H., Duan, T. Z., Liu, D. Y., Song, B., Li, Z. X. & Gao, Y. H. 2003. Zircon SHRIMP U–Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin 48, 1663–9.CrossRefGoogle Scholar
Wang, X. C., Li, X. H., Li, W. X., Li, Z. X., Liu, Y., Yang, Y. H., Liang, X. R. & Tu, X. L. 2008. The Bikou basalts in the northwestern Yangtze block, South China: remnants of 820–810 Ma continental flood basalts? Geological Society of America Bulletin 120, 1478–92.Google Scholar
Wang, X. C., Li, X. H., Li, Z. X., Li, Q. L., Tang, G. Q., Gao, Y. Y., Zhang, Q. R. & Liu, Y. 2012. Episodic Precambrian crust growth: evidence from U–Pb ages and Hf–O isotopes of zircon in the Nanhua Basin, central South China. Precambrian Research 222–223, 386403.CrossRefGoogle Scholar
Wang, W., Liu, S. W., Feng, Y. G., Li, Q. G., Wu, F. H., Wang, Z. Q., Wang, R. T. & Yang, P. T. 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: constraints from geochemistry and zircon U–Pb–Hf isotopic systematics. Gondwana Research 22, 699716.Google Scholar
Wang, B. & Shu, L. S. 2001. Notes on Late Paleozoic radiolarians of northeastern Jiangxi Province. Geological Review 47, 337–44 (in Chinese with English abstract).Google Scholar
Wang, X. L., Shu, L. S., Xing, G. F., Zhou, J. C., Tang, M., Shu, X. J., Qi, L. & Hu, Y. H. 2012. Post-orogenic extension in the eastern part of the Jiangnan orogen: evidence from ca 800–760 Ma volcanic rocks. Precambrian Research 222–223, 404–23.Google Scholar
Wang, Q., Wyman, D. A., Li, Z. X., Bao, Z. W., Zhao, Z. H., Wang, Y. X., Jian, P., Yang, Y. H. & Chen, L. L., 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research 178, 185208.Google Scholar
Wang, L. J., Yu, J. H., Griffin, W. L. & O'Reilly, S. Y. 2012. Early crustal evolution in the western Yangtze Block: evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research 222–223, 368–85.Google Scholar
Wang, Y. J., Zhang, Y. H., Fan, W. M. & Peng, T. P. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology 27, 985–98.CrossRefGoogle Scholar
Wang, Y. J., Zhang, F. F., Fan, W. M., Zhang, G. W., Chen, S. Y., Cawood, P. A. & Zhang, A. M. 2010. Tectonic setting of the South China Block in the early Paleozoic resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29, TC6020, 116.Google Scholar
Wang, X. L., Zhao, G., Zhou, J. C., Liu, Y. & Hu, J. 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research 14, 355–67.Google Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Wang, R. C., Qiu, J. S., O'Reilly, S. Y., Xu, X. S., Liu, X. M. & Zhang, G. L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Research 159, 117–31.Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S. & Gao, J. F. 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Research 135, 79103.Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Zhang, W., Liu, X. & Zhang, G. 2006 a. Petrogenesis of the Neoproterozoic strongly peraluminous granitoids from Northern Guangxi: constraints from zircon geochronology and Hf isotopes. Acta Petrologica Sinica 22, 326–42 (in Chinese with English abstract).Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Zhang, W. L., Liu, X. M. & Zhang, G. L. 2006 b. LA-ICP-MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Research 145, 111–30.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Wan, Y. S., Kitajima, K., Wang, D., Bonamici, C., Qiu, J. S. & Sun, T. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters 366, 7182.Google Scholar
Wasteneys, H. A., Clark, A. H., Farrar, E. & Langridge, R. J. 1995 Grenvillian granulite-facies metamorphism in the Arequipa Massif, Peru: a Laurentia-Gondwana link. Earth and Planetary Science Letters 132, 6373.Google Scholar
Wu, Y. B., Gao, S., Gong, H. J., Xiang, H., Jiao, W. F., Yang, S. H., Liu, Y. S. & Yuan, H. L. 2009. Zircon U–Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology 27, 461–77.Google Scholar
Wu, Y., Gao, S., Zhang, H., Zheng, J., Liu, X., Wang, H., Gong, H., Zhou, L. & Yuan, H. 2012. Geochemistry and zircon U–Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications. Precambrian Research 200–203, 2637.Google Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–26.Google Scholar
Wu, Y. B., Zheng, Y. F., Gao, S., Jiao, W. F. & Liu, Y. S., 2008. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 101, 308–22.CrossRefGoogle Scholar
Wu, R. X., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Zhang, S. B., Liu, X. & Wu, F. Y. 2006. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research 146, 179212.Google Scholar
Wu, Y. B., Zheng, Y. F., Zhao, Z. F., Gong, B., Liu, X. M. & Wu, F. Y. 2006. U–Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta 70, 3743–61.Google Scholar
Xiang, L. & Shu, L. S. 2010. Pre-Devonian tectonic evolution of the eastern South China block: geochronological evidence from detrital zircons. Science China Earth Sciences 53, 1427–44.Google Scholar
Xiang, H., Zhang, L., Zhou, H., Zhong, Z., Zeng, W., Liu, R. & Jin, S. 2008. U–Pb zircon geochronology and Hf isotope study of metamorphosed basic–ultrabasic rocks from metamorphic basement in southwestern Zhejiang: the response of the Cathaysia Block to Indosinian orogenic event. Science in China Series D: Earth Sciences 51, 788800.Google Scholar
Xiao, L., Zhang, H. F., Ni, P. Z., Xiang, H. & Liu, X. M. 2007. LA-ICP-MS U–Pb zircon geochronology of early Neoproterozoic mafic-intermediate intrusions from NW margin of the Yangtze Block, South China: implication for tectonic evolution. Precambrian Research 154, 221–35.Google Scholar
Xiong, Q., Zheng, J. P., Yu, C., Su, Y., Tang, H. & Zhang, Z. 2009. Zircon U–Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin 54, 436–46.Google Scholar
Xu, Q. 1999. Geochemistry of the Paleoproterozoic metavolcanic rocks and relation to Cu–Fe VMS deposits. Exploration and Mining Geology 8 (3), 177–88.Google Scholar
Xu, B. & Qiao, G. S. 1989. Sm–Nd isotopic age and tectonic setting of the Late Proterozoic ophiolites in northeastern Jiangxi province. Journal of Nanjing University of Science and Technology 3, 108–14 (in Chinese).Google Scholar
Xu, X. S., Xu, Q. & Pan, G. T. 1996. The Continental Evolution of Southern China and its Global Comparison. Beijing: Geological Publishing House, pp. 1012 (in Chinese).Google Scholar
Xue, F., Kroner, A., Reischmann, T. & Lerch, F. 1996. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. Journal of the Geological Society, London 153, 409–17.Google Scholar
Yan, D. P., Zhang, B., Zhou, M. F., Wei, G. Q., Song, H. L. & Liu, S. F. 2009. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds: an example from the Mesozoic fold belt of South China. Journal of Structural Geology 31, 150–62.Google Scholar
Yan, D. P., Zhou, M. F., Song, H. L., Wang, X. W. & Malpas, J. 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics 361, 239–54.Google Scholar
Yang, J., Cawood, P. A. & Du, Y. 2010. Detrital record of mountain building: provenance of Jurassic foreland basin to the Dabie Mountains. Tectonics 29, TC4011.Google Scholar
Yang, Z. Y., Li, Z. S., Qu, L. F., Lu, Z. M., Zhou, H. Q., Zhou, T. S., Liu, G. F., Liu, B. P. & Wu, R. T. 1982. The Triassic of China. Acta Geoscientica Sinica 56, 120.Google Scholar
Yang, Z. Y., Sun, Z. M., Yang, T. S. & Pei, Y. L. 2004. A long connection (750–380 Ma) between South China and Australia: paleomagnetic constraints. Earth and Planetary Science Letters 220, 423–34.Google Scholar
Yao, J. L., Shu, L. S. & Santosh, M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry – new clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research 20, 553–67.CrossRefGoogle Scholar
Yao, J. L, Shu, L. S., Santosh, M. & Li, J. Y. 2012. Precambrian crustal evolution of the South China Block and its relation to supercontinent history: constraints from U–Pb ages, Lu–Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite. Precambrian Research 208–211, 1948.Google Scholar
Ye, M. F., Li, X. H., Li, W. X., Liu, Y. & Li, Z. X. 2007. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research 12, 144–56.Google Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L. J., Griffin, W. L., Zhang, M., Wang, R. C., Jiang, S. Y. & Shu, L. S. 2008. Where was South China in the Rodinia supercontinent? Evidence from U–Pb ages and Hf isotopes of detrital zircons. Precambrian Research 164, 115.Google Scholar
Yu, J. H., O'Reilly, S. Y., Zhou, M. F., Griffin, W. L. & Wang, L. J. 2012. U–Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research 222–223, 424–49.Google Scholar
Yu, J. H., Wang, L. J., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Li, C. Z. & Shu, L. S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research 174, 347–63.Google Scholar
Yu, J. H., Zhou, X., O'Reilly, S. Y., Zhao, L., Griffin, W. L., Wang, R. C., Wang, L. J. & Chen, X. 2005. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U–Pb and Lu–Hf isotopic studies of single zircon grains. Chinese Science Bulletin 50 (18), 2080–9.Google Scholar
Yuan, H. L., Gao, S., Dai, M. N., Zong, C. L., Günther, D., Fontaine, G. H., Liu, X. M. & Diwu, C. R. 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP–MS. Chemical Geology 247, 100–18.Google Scholar
Zhang, Y. Q., Dong, S. W., Li, J. H., Cui, J. J., Shi, W., Su, J. B. & Li, Y. 2012. The new progress in the study of Mesozoic tectonics of South China. Acta Geoscientica Sinica 33 (3), 257–79 (in Chinese with English abstract).Google Scholar
Zhang, C. H., Fan, W. M., Wang, Y. J. & Peng, T. P. 2009. Geochronology and geochemistry of the Neoproterozoic mafic ultramafic dykes in the Aikou Area, Western Hunan Province: petrogenesis and its tectonic implications. Geotectonica et Metallogenia 33, 283–93 (in Chinese with English abstract).Google Scholar
Zhang, C. H., Gao, L. Z., Wu, Z. J., Shi, X. Y., Yan, Q. R. & Li, D. J. 2007. SHRIMP U–Pb zircon age of tuff from the Kunyang Group in central Yunnan: evidence for Grenvillian orogeny in South China. Chinese Science Bulletin 52, 1517–25.Google Scholar
Zhang, Q. R., Li, X. H., Feng, L. J., Huang, J. & Song, B. 2008. A new age constraint on the onset of the Neoproterozoic glaciations in the Yangtze Platform, South China. Journal of Geology 116, 423–29.Google Scholar
Zhang, J. Y., Ma, C. Q., She, Z. B., Zhang, X. G. & Zhou, H. S. 2007. The Early Paleozoic Tiefosi syn-collisional granite in the northern Dabie Orogen: geochronological and geochemical constraints. Science in China Series D: Earth Sciences 50, 847–56.Google Scholar
Zhang, S. B., Wu, R. X. & Zheng, Y. F. 2012. Neoproterozoic continental accretion in South China: geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen. Precambrian Research 220–221, 4564.CrossRefGoogle Scholar
Zhang, S. B. & Zheng, Y. F. 2012. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research 23, 1241–60.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146, 1634.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 b. Zircon U–Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.Google Scholar
Zhang, S. B., Zheng, Y.-F., Zhao, Z. F., Wu, Y. B., Yuan, H. & Wu, F. Y. 2008. Neoproterozoic anatexis of Archean lithosphere: geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research 163, 210–38.Google Scholar
Zhang, S. B., Zheng, Y. F., Zhao, Z. F., Wu, Y. B., Yuan, H. & Wu, F. Y. 2009. Origin of TTG-like rocks from anatexis of ancient lower crust: geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113, 347–68.Google Scholar
Zhao, G. C. & Cawood, P. A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: implications for Neoproterozoic collision-related assembly of the South China craton. American Journal of Science 299, 309–39.Google Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91123.Google Scholar
Zhao, J. H. & Zhou, M. F. 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos 104, 231–48.Google Scholar
Zhao, J. H. & Zhou, M. F. 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos 107, 152–68.Google Scholar
Zhao, X. F., Zhou, M. F., Li, J. W., Sun, M., Gao, J. F., Sun, W. H. & Yang, J. H. 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block. Precambrian Research 182, 5769.Google Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Yang, Y. H. & Sun, M. 2008. Zircon Lu–Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China. Precambrian Research 163, 189209.Google Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. & Li, J. W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299302.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Pearson, N. & Pan, Y. M. 2006. Widespread Archean basement beneath the Yangtze craton. Geology 34, 417–20.CrossRefGoogle Scholar
Zheng, Y. F., Wu, R. X., Wu, Y. B., Zhang, S. B., Yuan, H. & Wu, F. Y. 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research 163, 351–83.Google Scholar
Zheng, Y. F., Zhang, S. B., Zhao, Z. F., Wu, Y. B., Li, X., Li, Z. & Wu, F. Y. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96, 127–50.Google Scholar
Zheng, Y. F., Zhao, Z. F., Wu, Y. B., Zhang, S. B., Liu, X. & Wu, F. Y. 2006. Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology 231, 135–58.Google Scholar
Zhou, M. F., Kennedy, A. K., Sun, M., Malpas, J. & Lesher, C. M. 2002. Neoproterozoic arcrelated mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. Journal of Geology 110, 611–8.Google Scholar
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S. & Niu, Y. L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29 (1), 2633.Google Scholar
Zhou, J. C., Wang, X. L. & Qiu, J. S. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: coeval arc magmatism and sedimentation. Precambrian Research 170, 2742.Google Scholar
Zhou, J. C., Wang, X. L., Qiu, J. S. & Gao, J. F. 2004. Geochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: arc or plume magmatism? Geochemical Journal–Japan 38, 139–52.Google Scholar
Zhuang, J., Huang, Q. & Deng, B. 2000. Strata Subdivision and Petrology of Precambrian Metamorphic Rocks in Fujian. Xiamen: Xiamen University Press, pp. 8090 (in Chinese).Google Scholar
Supplementary material: File

Su Supplementary Material

Table S1

Download Su Supplementary Material(File)
File 143.4 KB
Supplementary material: File

Su Supplementary Material

Table S2

Download Su Supplementary Material(File)
File 178.6 KB