Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T19:26:55.040Z Has data issue: false hasContentIssue false

Detrital zircon populations in quartzites of the Krkonoše–Jizera Massif: implications for pre-collisional history of the Saxothuringian Domain in the Bohemian Massif

Published online by Cambridge University Press:  13 September 2011

ELIŠKA ŽÁČKOVÁ*
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic Institute of Petrology and Structural Geology, Charles University, Albertov 6, 128 43 Prague, Czech Republic
JIŘÍ KONOPÁSEK
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic
JAN KOŠLER
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic Centre for Geobiology and Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway
PETR JEŘÁBEK
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic Institute of Petrology and Structural Geology, Charles University, Albertov 6, 128 43 Prague, Czech Republic
*
Author for correspondence: eliska.zackova@geology.cz

Abstract

Age spectra of detrital zircons from metamorphosed quartzites of the Krkonoše–Jizera Massif in the northeastern part of the Saxothuringian Domain were obtained by U–Pb laser ablation inductively coupled plasma mass spectrometry dating. The zircon ages cluster in the intervals of 450–530 Ma and 550–670 Ma, and show individual data between 1.6 and 3.1 Ga. Zircons in the analysed samples are predominantly of Cambrian–Ordovician and Neoproterozoic age, and the marked peak at c. 525–500 Ma suggests a late Cambrian maximum age for the sedimentary protolith. Detritus of the quartzites probably originated from the erosion of Cambrian–Ordovician granitoids and their Neoproterozoic (meta)sedimentary or magmatic country rocks. The lack of Neoproterozoic (meta)sedimentary rocks in the central and eastern part of the Krkonoše–Jizera Massif suggests that the country rocks to voluminous Cambrian–Ordovician magmatic bodies were largely eroded during the formation of early Palaeozoic rift basins along the southeast passive margin of the Saxothuringian Domain. The detrital zircon age spectra confirm the previous interpretation that the exposed basement, dominated by Neoproterozoic to Cambrian–Ordovician granitoids, was overthrust during Devonian–Carboniferous subduction–collision processes by nappes composed of metamorphosed equivalents of the uppermost Cambrian–Devonian passive margin sedimentary formations. Only a negligible number of Mesoproterozoic ages, typically from the Grenvillian event, supports the interpretation that the Saxothuringian Neoproterozoic basement has an affinity to the West African Craton of the northwestern margin of Gondwana.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P., Kryza, R., Mazur, S. & Żaba, J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 134, 727–39.CrossRefGoogle Scholar
Awdankiewicz, M., Awdankiewicz, H., Kryza, R. & Rodionov, R. 2010. SHRIMP zircon study of a micromonzodiorite dyke in the Karkonosze Granite, Sudetes (SW Poland): age constraints for late Variscan magmatism in Central Europe. Geological Magazine 147, 7785.CrossRefGoogle Scholar
Bendl, J. & Patočka, F. 1995. The 87Rb/86Sr isotope geochemistry of the metamorphosed bimodal volcanic association of the Rýchory Mts. Crystalline Complex, West Sudetes, Bohemian Massif. Geologica Sudetica 29, 318.Google Scholar
Cháb, J. & Vrána, S. 1979. Crossite-actinolite amphiboles of the Krkonoše–Jizera crystalline complex and their geological significance. Věštník Ústředního ústavu geologického 54, 143–50.Google Scholar
Chaloupský, J. (ed.) 1989. Geology of the Krkonoše and Jizerské Hory Mountains. Praha: Ústřední ústav geologický (in Czech with English summary).Google Scholar
Chlupáč, I. 1993. Stratigraphic evaluation of some metamorphic units in the N part of the Bohemian Massif. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 188, 363–88.Google Scholar
Chlupáč, I. 1997. Paleozoic ichnofossils in phyllites near Železný Brod, northerm Bohemia. Journal of the Czech Geological Society 42, 7594.Google Scholar
Dostál, J., Patočka, F. & Pin, C. 2001. Middle/Late Cambrian intracontinental rifting in the central West Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of the bimodal metavolcanic rocks. Geological Journal 36, 117.CrossRefGoogle Scholar
Drost, K., Gerdes, A., Jeffries, T., Linnemann, U. & Storey, C. 2010. Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Research, doi:10.1016/j.gr.2010.05.003.CrossRefGoogle Scholar
Drost, K., Linnemann, U., McNaughton, N., Fatka, O., Kraft, P., Gehmlich, M., Tonk, C. & Marek, J. 2004. New data on the Neoproterozoic – Cambrian geotectonic setting of the Tepla-Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). International Journal of Earth Sciences 93, 742–57.CrossRefGoogle Scholar
Falk, F., Franke, W. & Kurze, M. 1995. Stratigraphy. In Pre-Permian Geology of Central and Eastern Europe (eds Dallmeyer, R.D., Franke, W. & Weber, K.), pp. 221–34. Berlin-Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Franke, W. 1989. Tectonostratigraphic units in the Variscan belt of central Europe. Geological Society of America Special Papers 230, 6790.CrossRefGoogle Scholar
Franke, W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In Orogenic Processes: Quantification and Modelling in the Variscan Belt of Central Europe (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 3556. Geological Society of London, Special Publication no. 179.Google Scholar
Furnes, H., Kryza, R., Muszynski, A., Pin, C. & Garmann, L. B. 1994. Geochemical evidence for progressive rift-related early Paleozoic volcanism in the western Sudetes. Journal of the Geological Society, London 151, 91109.CrossRefGoogle Scholar
Guiraud, M. & Burg, J. P. 1984. Mineralogical and petrological study of a blueschist metatuff from the Zelezny Brod Crystalline Complex, Czechoslovakia. Neues Jahrbuch für Mineralogie – Abhandlungen 149, 112.Google Scholar
Hegner, E. & Kröner, A. 2000. Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspastic reconstructions. In Orogenic Processes: Quantification and Modelling in the Variscan Belt of Central Europe (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 113–30. Geological Society of London, Special Publication no. 179.Google Scholar
Hladil, J., Patočka, F., Kachlík, V., Melichar, R. & Hubačík, M. 2003. Metamorphosed carbonates of Krkonoše Mountains and Paleozoic evolution of Sudetic terranes (NE Bohemia, Czech Republic). Geologica Carpatica 54, 281–97.Google Scholar
Horný, J. R. 1964. The Middle Cambrian Pelagiellacea of Bohemia (Mollusca). Sborník Národního Muzea v Praze 20, 133–40.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Kachlík, V. 1996. Lithostratigraphy and architecture of the Zelezny Brod Crystaline Unit: result of Variscan tectonodeformation (in Czech). Zprávy o geologických výzkumech vroce 1996, 30–1.Google Scholar
Kachlík, V. & Kozdroj, W. 2001. Ještěd Range Unit. In Comments on the Geological map Lauzitz-Jizera-Karkonozse (without Cenozoic sediments) (eds Kozdroj, W., Krentz, O. & Opletal, M.), pp. 2731. Freiberg: Sächsisches Landesamt für Umwelt und Geologie/Bereich Boden und Geologie; Warzsawa: Panstvowy Institut Geologiczny; Praha: Český geologický ústav.Google Scholar
Kachlík, V. & Patočka, F. 1998. Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. Acta Universitatis Carolinae Geologica 42, 433–41.Google Scholar
Konopásek, J. & Schulmann, K. 2005. Contrasting Early Carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). Journal of the Geological Society, London 162, 463–70.CrossRefGoogle Scholar
Košler, J., Bowes, D. R., Konopásek, J. & Míková, J. 2004. Laser ablation ICPMS dating of zircons in Erzgebirge orthogneisses: evidence for Early Cambrian and Early Ordovician granitic plutonism in the western Bohemian Massif. European Journal of Mineralogy 16, 1522.CrossRefGoogle Scholar
Košler, J., Fonneland, H., Sylvester, P., Tubrett, M. & Pedersen, R. B. 2002. U–Pb dating of detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology 182, 605–18.CrossRefGoogle Scholar
Kossmat, F. 1927. Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamtes 1, 139.Google Scholar
Kozdrój, W., Turniak, K., Tichomirova, M., Bombach, K., Kachlík, V. & Ziółkowska-Kozdrój, M. 2005. New 207Pb/206Pb zircon ages from the East Karkonosze Metamorphic Complex, West Sudetes – evidence of the Late Cambrian–Early Ordovician magmatism. Geolines 19, 6970.Google Scholar
Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K.-H., Krauss, M. & Eidam, J. 1994. Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geologische Rundschau 83 357–76.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., Hegner, E. & Opletal, M. 2001. Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše and Orlice-Sněnik Complex). International Journal of Earth Sciences 90, 304–24.CrossRefGoogle Scholar
Kryza, R. & Mazur, S. 1995. Contrasting metamorphic paths in the SE part of the Karkonosze-Izera block (Western Sudetes, SW Poland). Neues Jahrbuch für Mineralogie – Abhandlungen 169, 157–92.Google Scholar
Kryza, R., Mazur, S. & Pin, C. 1995. Leszczyniec meta-igneous complex in the eastern part of the Karkonosze-Izera Block, Western Sudetes: trace element and Nd isotope study. Neues Jahrbuch für Mineralogie – Abhandlungen 170, 5974.CrossRefGoogle Scholar
Kryza, R., Muszynski, A. & Vielzeuf, D. 1990. Glaucophane-bearing assemblage overprinted by greenschist-facies metamorphism in the Variscan Kaczawa complex, Sudetes, Poland. Journal of Metamorphic Geology 8, 344–55.CrossRefGoogle Scholar
Kryza, R. & Pin, C. 2010. The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research 17, 292305.Google Scholar
Kryza, R. & Zalasiewicz, J. 2008. Records of Precambrian–Early Palaeozoic volcanic and sedimentary processes in the Central European Variscides: a review of SHRIMP zircon data from the Kaczawa succession (Sudetes, SW Poland). Tectonophysics 461, 6071.CrossRefGoogle Scholar
Kryza, R., Zalasiewicz, J., Mazur, S., Aleksandrowski, P., Sergeev, S. & Larionov, A. 2007. Precambrian crustal contribution to the Variscan accretionary prism of the Kaczawa Mountains (Sudetes, SW Poland): evidence from SHRIMP dating of detrital zircons. International Journal of Earth Sciences 96, 1153–62.CrossRefGoogle Scholar
Linnemann, U., Gehmlich, M., Tichomirowa, M., Buschmann, B., Nasdala, L., Jonas, P., Lützner, H. & Bombach, K. 2000. From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (central European Variscides, Germany). In Orogenic Processes: Quantification and Modelling in the Variscan Belt. (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 131–53. Geological Society of London, Special Publication no. 179.Google Scholar
Linnemann, U., Gerdes, A., Drost, K. & Buschmann, B. 2007. Cadomian orogenic processes – the ultimate cause for the opening of the Rheic Ocean: constraints by Laser Ablation-ICP-MS U–Pb zircon dating and analysis of the geotectonic setting (Saxo-Thuringian zone, Bohemian massif, Germany). In The Geology of Peri-Gondwana: The Avalonian–Cadomian Belt, Adjoining Cratons and the Rheic Ocean (eds Linnemann, U., Kraft, P., Nance, R. D. & Zulauf, G.), pp. 6196. Geological Society of America, Special Papers 423.Google Scholar
Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K. & Tonk, C. 2004. West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? – U–Pb-SHRIMP zircon evidence and the Nd-isotopic record. International Journal of Earth Sciences 93, 683705.Google Scholar
Linnemann, U., Pereira, F., Jeffries, T. E., Drost, K. & Gerdes, A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of the geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461, 2143.Google Scholar
Ludwig, K. R. 1998. On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta 62, 665–76.CrossRefGoogle Scholar
Ludwig, K. R. 1999. IsoplotEx v. 2.6. Berkeley Geochronological Center Special Publications, 1a.Google Scholar
Machowiak, K. & Armstrong, R. 2007. SHRIMP U-Pb zircon age from the Karkonosze granite. Mineralogia Polonica, Special Papers 31, 193–6.Google Scholar
Maluski, H. & Patočka, F. 1997. Geochemistry and 40Ar-39Ar geochronology of the mafic metavolcanic rocks from the Rychory Mountains complex (west Sudetes, Bohemian Massif): palaeotectonic significance. Geological Magazine 134, 703–16.CrossRefGoogle Scholar
Marheine, D., Kachlík, V., Maluski, H., Patočka, F. & Żelazniewicz, A. 2002. The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothemal development. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J., Pharaoh, T. & Verniers, J.), pp. 133–55. Geological Society of London, Special Publication no. 201.Google Scholar
Matte, P., Maluski, H., Rajlich, P. & Franke, W. 1990. Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177, 151–70.CrossRefGoogle Scholar
Mazur, S. 1995. Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Range (in Polish with English summary). Geologica Sudetica 29, 3198.Google Scholar
Mazur, S. & Aleksandrowski, P. 2001. The Teplá(?)/Saxothuringian suture in the Karkonosze-Izera massif, Western Sudetes, Central European Variscides. International Journal of Earth Sciences 90, 341–60.CrossRefGoogle Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mazur, S. & Kryza, R. 1996. Superimposed compressional and extensional tectonics in the Karkonosze-Izera Block, NE Bohemian Massif. In Basement Tectonics 11, Europe and Other Regions (eds Oncken, O. & Jansen, C.), pp. 5166. Potsdam: Kluwer, Dordrecht.CrossRefGoogle Scholar
Mingram, B., Kröner, A., Hegner, E. & Kretz, O. 2004. Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. International Journal of Earth Sciences 93, 706–27.CrossRefGoogle Scholar
Mlčoch, B. & Konopásek, J. 2010. Pre-Late Carboniferous geology along the contact of the Saxothuringian and Teplá–Barrandian zones in the area covered by younger sediments and volcanics (western Bohemian Massif, Czech Republic). Journal of Geosciences 55, 137–50.Google Scholar
Narębski, W. 1994. Lower to Upper Paleozoic tectonomagmatic evolution of NE part of the Bohemian Massif. Zentralblatt für Geologie und Paläontologie I, 961–72.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Mochnacka, K. & Larionov, A. 2010. Ordovician passive continental margin magmatism in the Central-European Variscides: U-Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences 99, 2746.Google Scholar
Oliver, G. J. H., Corfu, F. & Krogh, T. E. 1993. U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, London 150, 355–69.CrossRefGoogle Scholar
Patočka, F., Fajst, M. & Kachlík, V. 2000. Mafic-felsic to mafic-ultramafic Early Palaeozoic magmatism of the West Sudetes (NE Bohemian Massif); the South Krkonoše Complex. Zeitschrift für Geologische Wissenschaften 28, 177210.Google Scholar
Patočka, F. & Pin, C. 2005. Sm-Nd isotope and trace element evidence for heterogeneous igneous protoliths of Variscan mafic blueschists in the East Krkonoše Complex (West Sudetes, NE Bohemian Massif, Czech Republic). Geodinamica Acta 18, 363–74.CrossRefGoogle Scholar
Patočka, F., Pivec, E. & Oliveriová, D. 1996. Mineralogy and petrology of mafic blueschists from the Rychory Mts crystalline complex (West Sudetes, Bohemian Massif). Neues Jahrbuch für Mineralogie – Abhandlungen 170, 313–30.Google Scholar
Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K. & Waldhausrova, J. 2007. The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anarogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm-Nd isotope and geochemical data. In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision (eds Linnemann, U., Nance, D., Kraft, P. & Zulauf, G.), pp. 209–29. Geological Society of America Special Paper 423.Google Scholar
Schulmann, K., Konopásek, J., Janoušek, V., Lexa, O., Lardeaux, J.-M., Edel, J.-B., Štípská, P. & Ulrich, S. 2009. An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes Rendus Geoscience 341, 266–86.CrossRefGoogle Scholar
Seston, R., Winchester, J. A., Piasecki, M. A. A., Crowley, Q. G. & Floyd, P. A. 2000. A structural model for the western-central Sudetes: a deformed stack of Variscan thrust sheets. Journal of the Geological Society, London 157, 1155–67.Google Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M., Morris, G. A., Nasdala, L., Norbert, N., Schalteger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.Google Scholar
Smulikowski, W. 1995. Evidence of glaucophane-schist facies metamorphism in the East Karkonosze complex, West Sudetes, Poland. Geologische Rundschau 84, 720–37.CrossRefGoogle Scholar
Tichomirowa, M., Berger, H.-J., Koch, E. A., Belyatski, B. V., Gotze, J., Kempe, U., Nasdala, L. & Schaltegger, U. 2001. Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides) – constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56, 303–32.CrossRefGoogle Scholar
Winchester, J. A., Floyd, P. A., Chocyk, M., Horbowy, K. & Kozdrój, W. 1995. Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. Journal of the Geological Society, London 152, 105–15.Google Scholar
Winchester, J. A., Patočka, F., Kachlík, V., Melzer, M., Nawakowski, C., Crowley, Q. G. & Floyd, P. A. 2003. Geochemical discrimination of metasedimentary sequences in the Krkonose-Jizera Terrane (West Sudetes, Bohemian Massif): paleotectonic and stratigraphic constraints. Geologica Carpathica 54, 267–80.Google Scholar
Žáčková, E., Konopásek, J., Jeřábek, P. & Faryad, S. W. 2007. Blueschist-facies metamorphism in metasediments of the Krkonoše–Jizera Complex (Western Sudetes, northern Bohemian Massif). In Proceedings and Excursion Guide of the 5th Meeting of the Central European Tectonic Studied Group in Teplá, p. 99.Google Scholar
Žáčková, E., Konopásek, J., Jeřábek, P., Finger, F. & Košler, J. 2010. Early Carboniferous blueschist-facies metamorphism in metapelites of the West Sudetes (Northern Saxothuringian Domain, Bohemian Massif). Journal of Metamorphic Geology 28, 361–79.Google Scholar