Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:29:31.194Z Has data issue: false hasContentIssue false

Detrital zircon provenance of the Lower Yangtze foreland basin deposits: constraints on the evolution of the early Palaeozoic Wuyi–Yunkai orogenic belt in South China

Published online by Cambridge University Press:  21 March 2013

HAI-BIN LI
Affiliation:
State Key Laboratory for Mineral Deposits Research, Institute of Energy Sciences and Department of Earth Sciences, Nanjing University, Nanjing 210093, China
DONG JIA*
Affiliation:
State Key Laboratory for Mineral Deposits Research, Institute of Energy Sciences and Department of Earth Sciences, Nanjing University, Nanjing 210093, China
LONG WU
Affiliation:
State Key Laboratory for Mineral Deposits Research, Institute of Energy Sciences and Department of Earth Sciences, Nanjing University, Nanjing 210093, China
YONG ZHANG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Institute of Energy Sciences and Department of Earth Sciences, Nanjing University, Nanjing 210093, China
HONG-WEI YIN
Affiliation:
State Key Laboratory for Mineral Deposits Research, Institute of Energy Sciences and Department of Earth Sciences, Nanjing University, Nanjing 210093, China
GUO-QI WEI
Affiliation:
Research Institute of Petroleum Exploration and Development, Petrochina, LangfangBranch, Langfang 065007, China
BEN-LIANG LI
Affiliation:
Research Institute of Petroleum Exploration and Development, Petrochina, Beijing 100083, China
*
Author for correspondence: djia@nju.edu.cn

Abstract

The Lower Yangtze foreland basin is situated to the northwest of the early Palaeozoic Wuyi–Yunkai orogen in South China. To demonstrate its provenance history and the denudation of the orogen, seven sandstone samples were collected from the upper Ordovician to Silurian strata for U–Pb dating. The zircons show a broad range of ages that can be linked with the ages of specific units in the Wuyi–Yunkai orogen. The zircon spectra in the late Ordovician samples are similar to those in the pre-orogenic strata, suggesting a recycled source. The dominant age population of 880–740 Ma in the early Llandovery samples indicates that the middle Neoproterozoic volcanic rocks were the primary source. A significant age population of 460–425 Ma in the late Llandovery to Wenlock samples reflects the fact that the synorogenic magmatic and metamorphic rocks were exposed to provide detritus. The youngest zircons from the uppermost Silurian strata yield an age of 425 Ma, which approximates the inferred depositional age. This age, together with available biostratigraphic data, indicates that the foreland basin was formed 448–425 Ma ago. We surmise a possible link between the Wuyi–Yunkai orogen and the Appalachian–Caledonian orogen based on the geological constraints and palaeomagnetic data.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ABGMR (Anhui Bureau of Geology and Mineral Resources). 1997. Multiple Classification of Stratigraphy of China (34), Stratigraphy (Lithostratigraphic) of Anhui Province. Wuhan: China University of Geosciences Press, 721 pp. (in Chinese with English abstract).Google Scholar
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Bingen, B. & Solli, A. 2009. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies. Norwegian Journal of Geology 89, 267–90.Google Scholar
Bradley, D. C. 2008. Passive margins through earth history. Earth-Science Reviews 91, 126.Google Scholar
Cawood, P. A., Nemchin, A. A., Leverenz, A., Saeed, A. & Ballance, P. F. 1999. U/Pb dating of detrital zircons: implications for the provenance record of Gondwana margin terranes. Geological Society of America Bulletin 111, 1107–19.Google Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R. A., Prave, T. & Rabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164, 257–75.Google Scholar
Charvet, J., Shu, L. S., Faure, M., Choulet, F., Wang, B., Lu, H. F. & Breton, N. L. 2010. Structural development of the Lower Palaeozoic belt of South China: genesis of an intracontinental orogen. Journal of Asian Earth Sciences 39, 309–30.Google Scholar
Charvet, J., Shu, L. S., Shi, Y. S., Guo, L. Z. & Faure, M. 1996. The building of South China: collision of Yangtze and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223–35.Google Scholar
Chen, X., Chen, T. E., Zou, X. P., Qiu, J. Y., Ni, Y. N. & Yang, X. C. 1988. Ordovician of the Lower Yangtze in Jiangsu region. In Sinian-Triassic Biostratigraphy of the Lower Yangtze Peneplatform in Jiangsu Region (eds Geological Sciences Institute of Jiangsu Petroleum Bureau and Nanjing Institute of Geology and Palaeontology), pp. 81126. Nanjing: Nanjing University Press (in Chinese).Google Scholar
Chen, X. & Rong, J. Y. 1996. Telychian (Llandovery) of the Yangtze Region and its correlation with British Isles. Beijing: Science Press, 162 pp. (in Chinese with English abstract).Google Scholar
Chen, X., Rong, J. Y., Li, Y. & Boucot, A. J. 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 353–72.Google Scholar
Chen, X., Rong, J. Y., Mitchell, C. E., Harper, D. A. T., Fan, J. X., Zhan, R. B., Zhang, Y. D., Li, R. Y. & Wang, Y. 2000. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China with a global correlation. Geological Magazine 137, 623–50.Google Scholar
Chen, X., Rowley, D., Rong, J. Y., Zhang, J., Zhang, Y. D. & Zhan, R. B. 1997. Late Precambrian through Early Palaeozoic stratigraphic and tectonic evolution of the Nanling Region, Hunan Province, South China. International Geology Review 39, 469–78.Google Scholar
Chen, X., Zhang, Y. D., Fan, J. X., Cheng, J. F. & Li, Q. J. 2010. Ordovician graptolite-bearing strata in southern Jiangxi with a special reference to the Kwangsian Orogeny. Science China Earth Sciences 53, 1602–10.Google Scholar
Chen, X., Zhou, Z. Y. & Fan, J. X. 2010. Ordovician palaeogeography and tectonics of the major palaeoplates of China. In The Ordovician Earth System (eds Finney, S. C. & Berry, W. B. N.), pp. 85104. Geological Society of America, Special Papers no. 466.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society, London 159, 631–44.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews 72, 3966.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2011. The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth-Science Reviews 106, 151.Google Scholar
Dewey, J. F. & Strachan, R. A. 2003. Changing Silurian-Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. Journal of the Geological Society, London 160, 219–29.CrossRefGoogle Scholar
Ettensohn, F. R. 2004. Modeling the nature and development of major Paleozoic clastic wedges in the Appalachian Basin, USA. Journal of Geodynamics 37, 657–81.CrossRefGoogle Scholar
Faure, M., Shu, L. S., Wang, B., Charvet, J., Choulet, F. & Monie, P. 2009. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 21, 360–8.Google Scholar
Gee, D. G., Fossen, H., Henriksen, N. & Higgins, A. K. 2008. From the Early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavian and Greenland. Episodes 31, 4451.Google Scholar
Gilotti, J. A., Jones, K. A. & Elvevold, S. 2008. Caledonian metamorphic patterns in Greenland. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 201–5. Geological Society of America, Memoir no. 202.CrossRefGoogle Scholar
Guo, L. Z., Shi, Y. S., Lu, H. F., Ma, R. S., Dong, H. G. & Yang, S. F. 1989. The pre-Devonian tectonic patterns and evolution of South China. Journal of SE Asian Earth Sciences 3, 8793.Google Scholar
Hibbard, J. P., van Staal, C. R. & Rankin, D. W. 2010. Comparative analysis of the geological evolution of the northern and southern Appalachian orogen: Late Ordovician-Permian. In From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region (eds Tello, R. P., Bartholomew, M. J., Hibbard, J. P. & Karabinos, P. M.), pp. 5169. Geological Society of America, Memoir no. 206.Google Scholar
Higgins, A. K. & Leslie, A. G. 2000. Restoring thrusting in the East Greenland Caledonides. Geology 28, 1019–22.2.0.CO;2>CrossRefGoogle Scholar
Hu, X. J., Xu, J. K., Tong, C. X., Chen, C. H. & Ye, G. K. 1992. Geological features and tectonic evolution of the middle Proterozoic Longquan Group in Southern Zhejiang. Regional Geology of China 1, 2030 (in Chinese with English abstract).Google Scholar
Huang, K., Opdyke, N. & Zhu, R. X. 2000. Further paleomagnetic results from the Silurian of the Yangtze Block and their implications. Earth and Planetary Science Letters 175, 191202 CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
JBGMR (Jiangsu Bureau of Geology and Mineral Resources). 1984. Regional Geology of Jiangsu Province and Shanghai City. Beijing: Geological Publishing House, 857 pp. (in Chinese with English abstract).Google Scholar
Jiang, G., Kennedy, M. J. & Christie-Blick, N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–26.Google Scholar
Jiang, G., Sohl, L. E. & Christie-Blick, N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): paleogeographic implications. Geology 31, 917–20.Google Scholar
Kneller, B. C. 1991. A foreland basin on the southern margin of Iapetus. Geology 148, 207–10.Google Scholar
Li, L. M., Sun, M., Wang, Y. J., Xing, G. F., Zhao, G. C., Lin, S. F., Xia, X. P., Chan, L. S., Zhang, F. F. & Wong, J. 2011. U–Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia Block: implications for the early Paleozoic peak tectonothermal event in Southeastern China. Gondwana Research 19, 191201.CrossRefGoogle Scholar
Li, W. X., Li, X. H. & Li, Z. X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research 136, 5166.Google Scholar
Li, W. X., Li, X. H., Li, Z. X. & Lou, F. S. 2008. Obduction-type granites within the NE Jiangxi ophiolite: implications for the final amalgamation between the Yangtze and Cathaysia blocks. Gondwana Research 13, 288301.Google Scholar
Li, X. H., Li, W. X., Li, Z. X. & Liu, Y. 2008. 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: a major episode of continental rift magmatism during the breakup of Rodinia. Lithos 102, 341–57.Google Scholar
Li, X. H., Zhou, G., Zhao, J., Fanning, C. M. & Compston, W. 1994. SHRIMP ion microprobe zircon U–Pb age of the NE Jiangxi ophiolite and its tectonic implications. Geochimica 23, 125–31 (in Chinese with English abstract).Google Scholar
Li, Z. X. 1998. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic: a synthesis. In Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M. J., Chung, S. L., Lo, C. H. & Lee, T. Y.), pp. 221–43. American Geophysical Union Geodynamics Series no. 27. Washington, DC, USA.Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters 173, 171–81.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. 2010. Magmatic and metamorphic events during the early Palaeozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions. Geological Society of America Bulletin 122, 772–93.Google Scholar
Li, Z. X., Li, X. H., Zhou, H. W. & Kinny, P. D. 2002. Grenvillian continental collision in South China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.Google Scholar
Li, Z. X. & Powell, C. M. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237–77.Google Scholar
Liu, B. J. & Xu, X. S. 1994. Atlas of Lithofacies and Palaeogeography of South China (Sinian to Triassic). Beijing: Science Press, 188 pp. (in Chinese).Google Scholar
Liu, R., Zhou, H. W., Zhang, L., Zhong, Z. Q., Zeng, W., Xiang, H., Jin, S., Lu, X. Q. & Li, C. Z. 2009. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China: evidence from zircon trace elements, U–Pb and Lu–Hf isotopes. Chinese Science Bulletin 54, 1543–54.Google Scholar
Liu, R., Zhou, H. W., Zhang, L., Zhong, Z. Q., Zeng, W., Xiang, H., Jin, S., Lu, X. Q. & Li, C. Z. 2010. Zircon U–Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW Fujian Province, Southeast China: constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny. Lithos 119, 163–80.Google Scholar
Ma, R. S. 2006. New thought about the tectonic evolution of the South China: with discussion on several problems of the Cathaysian Oldland. Geological Journal of China Universities 12, 448–56 (in Chinese with English abstract).Google Scholar
McKerrow, W. S., MacNiociall, C. & Dewey, J. F. 2000. The Caledonian Orogeny redefined. Journal of the Geological Society, London 157, 1149–54.Google Scholar
Mu, E. Z., Boucot, A. J., Chen, X. & Rong, J. Y. 1986. Correlation of the Silurian Rocks of China (A Part of the Silurian Correlation for East Asia). Geological Society of America Special Paper no. 202, 80 pp.Google Scholar
Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A., Bembinova, E. Y. & Shalimov, I. V. 1996. Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics 268, 2363.CrossRefGoogle Scholar
Oliver, G. J. H., Wilde, S. A. & Wan, Y. S. 2008. Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. Journal of Geology Society, London 165, 661–74.Google Scholar
Qiu, Y. M., Gao, S., McNaughton, N. J., Groves, D. I. & Ling, W. L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 11–4.2.0.CO;2>CrossRefGoogle Scholar
Ren, J. S. & Chen, T.Y. 1989. Tectonic evolution of the continental lithosphere in eastern China and adjacent areas. Journal of Southeast Asian Earth Sciences 3, 1727.Google Scholar
Ren, J. S. 1991. On the geotectonics of southern China. Acta Geologica Sinica 4, 111–30.Google Scholar
Rong, J. Y. & Chen, X. 1987. Faunal differentiation, biofacies and lithofacies pattern of late Ordovician (Ashgillian) in South China. Acta Palaeontologica Sinica 26, 507–35.Google Scholar
Rong, J. Y., Chen, X., Zheng, S. Y., Ni, Y. N., Zhan, R. B., Chen, T. E., Fu, L. P., Li, R. Y. & Fan, J. X. 2003. Silurian palaeogeography of China. In Silurian Lands and Seas, Palaeogeography Outside of Laurentia (eds Landing, E. & Johnson, M. E.), pp. 243–98. New York State Museum Bulletin no. 493.Google Scholar
Rong, J. Y., Zhan, R. B., Xu, H. G., Huang, B. & Yu, G. H. 2010. Expansion of the Cathaysian Oldland through the Ordovician–Silurian transition: emerging evidence and possible dynamics. Science China Earth Sciences 53, 117.CrossRefGoogle Scholar
Shu, L. S., Faure, M., Yu, J. H. & Jahn, B. M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research 187, 263–76.CrossRefGoogle Scholar
Vernhet, E., Heubeck, C., Zhu, M. Y. & Zhang, J. M. 2006. Large-scale slope instability at the southern margin of the Ediacaran Yangtze Platform (Hunan province, central China). Precambrian Research 148, 3244.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Wilde, S. A., Cao, J. J., Chen, B., Dong, C. Y., Song, B. & Du, L. L. 2010. Evolution of the Yunkai Terrane, South China: evidence from SHRIMP zircon U–Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences 37, 140–53.Google Scholar
Wan, Y. S., Liu, D., Xu, M., Zhuang, J., Song, B., Shi, Y. & Du, L. 2007. SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in NW Fujian, Cathaysian block, China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12, 166–83.Google Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122, 141–58.Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S. & Gao, J. F. 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Research 135, 79103.Google Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Wang, R. C., Qiu, J. S., O'Reilly, S. Y., Xu, X. S., Liu, X. M. & Zhang, G. L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research 159, 117–31.Google Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Zhang, W. L., Liu, X. M. & Zhang, G. L. 2006. LA-ICP-MS zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Research 145, 111–30.Google Scholar
Wang, Y. J., Fan, W. M., Zhao, G. C., Ji, S. C. & Peng, T. P. 2007. Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research 12, 404–16.CrossRefGoogle Scholar
Wang, Y. J., Zhang, A. M., Fan, W. M., Zhao, G. C., Zhang, G. W., Zhang, Y. Z., Zhang, F. F. & Li, S. Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U–Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi–Yunkai Domains. Lithos 127, 239–60.Google Scholar
Wang, Y. J., Zheng, F. F., Fan, W. M., Zhang, G. W., Chen, S. Y., Cawood, P. A. & Zhang, A. M. 2010. Tectonic setting of the South China Block in the early Palaeozoic: resolving intracontinental and ocean closure models from detrital zircon U–Pb geochronology. Tectonics 29, 116.CrossRefGoogle Scholar
Wu, L., Jia, D., Li, H. B., Deng, F. & Li, Y. Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity. Geological Magazine 176, 974–80.Google Scholar
Xia, B. D. & Lu, H. B. 1990. A study on a buried fossil orogenic belt. Acta Sedimentologica Sinica 8, 18 (in Chinese with English abstract).Google Scholar
Xu, K. Q., Liu, Y. J., Yu, S. J., Wang, H. N. & Wei, X. Z. 1960. The discovery of the Caledonian granite in South Jiangxi Province. Geological Review 20, 112–4 (in Chinese).Google Scholar
Xu, X. B., Zhang, Y. Q., Shu, L. S. & Jia, D. 2011. La-ICP-MS U–Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: constraints on the timing of Early Palaeozoic and Early Mesozoic tectono-thermal events in SE China. Tectonophysics 501, 7186.Google Scholar
Yang, S. F., Chen, H. L., Wu, G. H. & Dong, C. W. 1995. Discovery of early Paleozoic island-arc volcanic rocks in north part of Fujian Province and the significance for tectonic study. Scientia Geologica Sinica 30, 105–16 (in Chinese with English abstract).Google Scholar
Yang, D. S., Li, X. H., Li, W. X., Liang, X. H., Long, W. G. & Xiong, X. L. 2010. U–Pb and 40Ar–39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen. Geological magazine 147, 481–96.Google Scholar
Yao, J. L., Shu, L. S. & Santosh, M. 2011. Detrital zircon U–Pb geochronology, Hf-isotopes and geochemistry – new clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research 20, 553–67.Google Scholar
Ye, M. F., Li, X. H., Li, W. X., Liu, Y. & Li, Z. X. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research 12, 144–56.Google Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L. J., Griffin, W. L., Zhang, M., Wang, R. C., Jiang, S. Y. & Shu, L. S. 2008. Where was South China in the Rodinia supercontinent? Evidence from U–Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research 164, 115.Google Scholar
Yu, J. H., Wang, L. J., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Li, C. Z. & Shu, L. S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research 174, 347–63.Google Scholar
ZBGMR (Zhejiang Bureau of Geology and Mineral Resources). 1965. Regional Geological Survey Report (Jiande area, 1:200000), 162 pp. (in Chinese).Google Scholar
ZBGMR (Zhejiang Bureau of Geology and Mineral Resources). 1989. Regional Geology of Zhejiang Province. Beijing: Geological Publishing House, 688 pp. (in Chinese with English abstract).Google Scholar
Zhang, Z. M., Liou, J. G. & Coleman, R. G. 1984. An outline of the plate tectonics of China. Geological Society of America Bulletin 95, 295312.2.0.CO;2>CrossRefGoogle Scholar
Zhao, G. & Cawood, P. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science 299, 309–39.CrossRefGoogle Scholar
Zheng, Y. F., Wu, R. X., Wu, Y. B., Zhang, S. B., Yuan, H. L. & Wu, F. Y. 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research 163, 351–83.Google Scholar
Zhou, C. M., Tucker, R., Xiao, S., Peng, Z., Yuan, X. & Chen, Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology 32, 437–40.Google Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. Q. & Ding, J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China. Earth and Planetary Science Letters 196, 5167.Google Scholar
Supplementary material: File

Li Supplementary Material

Table S1

Download Li Supplementary Material(File)
File 2.4 MB